Analyzing mathematics critical thinking ability on trigonometric equation based on students' confidence

Nuriyati Hamzah^{1*}, Dwi Astuti¹, Sukar²

¹Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Tamanan, Banguntapan, Bantul, DIY 55191 Indonesia ²SMA N 2 Bantul, Jl. R. A. Kartini, Trirenggo, Bantul, DIY, Indonesia *Corresponding e-mail: nurhamzahauna@gmail.com

Abstract

This study is aimed to describe the students' mathematical critical thinking skills in the material of trigonometric equations in terms of students' self-confidence. The subjects of this study were students of class XI MIPA 3 at SMA Negeri 2 Bantul, which consisted of 32 students. The instrument used in this research is a mathematical critical thinking ability test, a self-confidence questionnaire, and interviews. From the results of this study, it was found that students with high self-confidence have good mathematical critical thinking skills. Meanwhile, students with moderate self-confidence have good mathematical critical thinking skills, and students with low self-confidence have low mathematical critical thinking skills. So can be concluded that the students' self-confidence categories do not influence the students' mathematical critical thinking skills.

Keywords: mathematics critical thinking skill, self-confidence, trigonometric equation

How to cite: Hamzah, N., Astuti, D., & Sukar. (2022). Analyzing mathematics critical thinking ability on trigonometric equation based on students' confidence. *Proceedings of the International Conference on Education*, *1*, 271-281.

INTRODUCTION

One of the important parts of mathematical abilities that need to be developed is critical thinking skills. In learning mathematics, critical thinking is one of the abilities that must be mastered by students (Nurapipah, 2019). Students can use these critical thinking skills to observe the opinions of others who are the same or different and decide which opinion is correct.

One of the mathematical subjects that require mathematical skills is trigonometric equations (Endaryono & Azzahra, 2022). This makes learning mathematics not only by memorizing or simply studying the concept, but it needs to be designed so that it can develop students' thinking processes to be able to solve problems by providing appropriate solutions. Critical thinking is not only used in the scientific world but can also be used in everyday life (Amalia et al., 2020).

According to (Hidayah et al., 2017), critical thinking indicators are the ability to analyze, interpret, identify relevant and irrelevant information, evaluate, implement strategies to make the right decisions, and conclude and self-regulate. According to (Setiana & Purwoko, 2020), there are six aspects and indicators of critical thinking, namely: 1) Focus, the stage to understand the given problem by identifying the information contained in the problem. 2) Reason is the stage for compiling a reason that is in accordance with facts or evidence. 3) Inference (drawing conclusions), the stage to conclude the problem appropriately to support the conclusions that have been made. 4) Situation, the stage to use the information obtained from the given problem. 5) Clarify the stage to provide further explanation of the conclusions that have been made. 6) Overview, the stage to check or re-correct the results of problem-solving obtained. In this study, the indicators of mathematical critical thinking skills that will be used refer to the opinion above, which are presented in Table 1.

	Table 1. Critical thinking indicator					
No	Indicator	Information				
1	Identify	Students are able to formulate information clearly				
2	Clarifying	Students are able to rediscover important questions in the problem				
3	Analyze	Students are able to describe problem-solving strategies				
4	Evaluate	Students are able to solve problems carefully				
5	Conclude	Students can conclude the problem correctly				

The importance of instilling the habit of critical thinking skills in students, it is hoped that students can solve various problems found in everyday life. To achieve mathematical critical thinking skills in mathematics learning, students need self-confidence. Self-confidence is needed by students in order to develop their abilities (Hajar & Minarti, 2019).

Confidence in learning mathematics is the confidence of students in their mathematical abilities. With this sense of confidence, students have confidence in their abilities to be used in solving problems (Pebianto et al., 2019). Research (Agryvita et al., 2019) shows that students with high self-confidence have good mathematical critical thinking skills, and vice versa. Aspects of self-confidence, according to (Amri, 2018), are belief in one's own abilities, optimism, objectivity, responsible, and rationale.

Previous research conducted by (Wicaksono & Prihatnani, 2019) entitled "Profile of Students' Mathematical Critical Thinking in Solving Trigonometry Problems Judging from the Level of Confidence" stated that the critical thinking ability of students was strongly influenced by their self-confidence. S1 students as subjects who have high self-confidence are able to solve problems correctly and fulfill all aspects of FRISCO, while S2 students as subjects who have low self-confidence are unable to solve problems correctly and only fulfill aspects of focus, reason, inference, and clarity. The update carried out in this study is a study conducted on students of Class XI at SMAN 2 Bantul on the material of trigonometric equations.

Another Research conducted by (Yusmanto & Herman, 2016) stated that learning mathematics with the discovery learning (D-L) model could improve mathematical critical thinking skills. The mathematics self-confidence (S-C) of students in the experimental class using the discovery learning model (D-L) was higher than in the class that used direct learning. There was no relationship between mathematical critical thinking skills and self-confidence (S-C) of elementary school students. The difference between this research with the previous research is this research was conducted to describe mathematical critical thinking skills in terms of students' self-confidence. The research subject is class XI students at SMAN 2 Bantul, and the material used is trigonometric equations.

Research conducted by (Oktaviani et al., 2019) states that using the Discovery Learning (D-L) model can improve critical thinking skills and mathematics learning outcomes. The difference with the research conducted is that the research subject is class XI students at SMAN 2 Bantul on the material of trigonometric equations in terms of students' self-confidence.

RESEARCH METHOD

The research method used in this study was a qualitative descriptive method. This research was conducted in Kec. Bantul, Special Region of Yogyakarta. The subjects in this study were students of class XI MIPA 3 at SMA Negeri 2 Bantul, totaling 32 students. The material taken for this research was trigonometric equations.

In this study, the instrument used was a mathematical critical thinking ability test, a selfconfidence questionnaire, and interviews to obtain supporting data. The mathematical critical thinking ability test consists of 2 description questions based on five selected critical thinking skills indicators. In comparison, the self-confidence questionnaire consists of 25 statement items based on four selected confidence indicators. The questionnaire used in this study was a closed questionnaire to determine students' confidence in learning mathematics. Student responses consist of 4 choices, namely Strongly Agree, Agree, Disagree, and Strongly Disagree. Then the researcher categorizes the research subjects based on the level of self-confidence, namely:

	-		
Criteria	Score		
High	$75 \le x \le 100$		
Medium	$50 \le x < 75$		
Low	$25 \le x < 50$		
(done by the researcher)			
x= self-confiden	nce score of each student		

Table 2. Criteria for grouping students' self-confidence levels

This study uses data analysis techniques with three steps, namely scoring, data presentation, and drawing conclusions. Scoring is used to determine the number of scores. The scores given for the assessment of students' mathematical critical thinking skills are presented in Table 3.

	Table 3. Scoring guidelines for students' critical thinking ability test					
No	Indicator	Information	Score			
1	Identify (Students can	Not writing down some information on the	0			
	formulate information	problem				
	clearly)	Write down all the information in the question,	1			
		but something is wrong				
		Write down all the information in the question	2			
		correctly				
2	Clarifying (Students can	Unable to determine the essence of the	0			
	rediscover important	question				
	questions in the problem)	Found the essence of the problem but wrong	1			
		Find the essence of the problem correctly	2			
3	Analyzing (Students can	Does not describe how to solve the problem	0			
	describe problem-solving	Describe how to solve the problem but not all	1			
	strategies)	correct				
		Describe how to solve the problem correctly	2			
4	Evaluating (Students can	No answer	0			
	solve problems carefully)	Giving answers but not all correct	1			
		Give understandable and correct answers and	2			
		reasons				
5	Concluding (Students can	Don't conclude	0			
	conclude the problem	Summing up, but some wrong	1			
	correctly)	Summing up properly	2			

For the calculation of students' mathematical critical thinking ability test scores using the following formula:

Score (S) =
$$\frac{Total \ score \ obtained}{maximum \ score} \times 100\%$$

After determining the value of students, then grouping is carried out based on the value criteria presented in Table 4.

0	0
Score	Category
$80 \le S \le 100$	High
$65 \le S < 80$	Medium
< 65	Low

Table 4. Categories of students' critical thinking ability

RESULTS AND DISCUSSION

Student Confidence

The results of this confidence analysis were carried out on 32 students of class XI MIPA 3 at SMA Negeri 2 Bantul by giving a questionnaire containing 25 statement items from 4 confidence indicators. From these data, a description of the students' scores is obtained in Table 5.

Table 5	6. Criteria	for grouping	students	' self-confidence	levels

Criteria	Score
 High	$75 \le x \le 100$
Medium	$50 \le x < 75$
Low	$25 \le x < 50$
 v- colf confidence	a searce of each student

x= self-confidence score of each student

Based on Table 5, the results of the questionnaire recapitulation are presented in Table 6. Table 7. shows that the percentage of students' self-confidence is 67.5% in the medium confidence category. From the results of grouping the level of self-confidence of students in each group, one research subject was selected by considering the score of the self-confidence questionnaire that was answered according to the time given and also considering the willingness of students during interviews to obtain valid data. Thus, the subjects selected in this study to analyze the students' mathematical critical thinking skills were subjects with high self-confidence, namely R_{22} , subjects with moderate self-confidence, R_{16} , and subjects with low self-confidence, R_{29} .

No	Respondent	Score	Criteria
1	R ₁	56	Medium
2	R_2	69	Medium
3	R ₃	70	Medium
4	R ₄	62	Medium
5	R_5	61	Medium
6	R ₆	70	Medium
7	R ₇	49	Low
8	R ₈	63	Medium
9	R ₉	69	Medium
10	R ₁₀	72	Medium
11	R ₁₁	64	Medium
12	R ₁₂	71	Medium
13	R ₁₃	63	Medium
14	R ₁₄	75	High
15	R ₁₅	65	Medium
16	R ₁₆	57	Medium
17	R ₁₇	74	Medium
18	R ₁₈	88	High
19	R ₁₉	63	Medium
20	R ₂₀	48	Low
21	R ₂₁	71	Medium
22	R ₂₂	82	High
23	R ₂₃	69	Medium
24	R ₂₄	74	Medium
25	R ₂₅	67	Medium
26	R ₂₆	75	High
27	R ₂₇	77	Tinggi
28	R ₂₈	69	Medium
29	R ₂₉	49	Low
30	R ₃₀	71	Medium
31	R ₃₁	80	High
32	R ₃₂	67	Medium
Conf	idence Percentage Student Self	67,5%	Medium

Table 6. Results of student confidence questionnaire recapitulation

Mathematical critical thinking ability

Based on the test results of students' mathematical critical thinking skills. The following is the acquisition of students' mathematical critical thinking ability test scores regarding the material of trigonometric equations, presented in Table 8.

	Table 8. Obtaining students' critical thinking ability scores															
Ne	Deen		Pro	blem	1		C		Pr	oblem	2		Coone	Total	Manle	Cuitouia
NO	kesp.	1	2	3	4	5	score	1	2	3	4	5	Score	Score	Wark	Criteria
1	R ₂₂	2	0	2	2	0	6	2	0	1	1	1	5	11	55	Low
2	R ₁₆	2	2	2	2	0	8	2	0	2	0	2	6	14	70	Medium
3	R ₂₉	1	1	2	2	0	6	2	0	1	0	2	5	11	55	Low
Tota per	l score ⁻ item	5	3	6	6	0		6	0	4	1	5				

From the scores of students' critical thinking skills, the percentage of critical thinking skills per indicator is presented in Table 9.

	Table 9. Percentage of Students' C	ritical Thinking Al	pility per Inc	licator
	Critical Thinking Ability Indicator	Percentage per Indicator	Criteria	Percentage Critical Thinking Ability
1	Identify (Students can formulate information clearly)	92%	High	
2	Clarifying (Students can rediscover important questions in the problem)	25%	Low	
3	Analyzing (Students can describe problem-solving strategies)	83%	High	60%
4	Evaluating (Students can solve problems carefully)	58%	Low	
5	Concluding (Students can conclude the problem correctly)	42%	Low	
	Criteria for Students' Critical Thi	nking Ability		Low

Based on table 9. shows that students' critical thinking skills are in the low criteria, with a classical average value of 60%. The achievement of indicators to identify or formulate information clearly is 92%, the achievement of indicators to clarify or rediscover important questions in the problem is 25%, the achievement of indicators to analyze or describe problem-solving strategies is 83%, the achievement of indicators to evaluate or solve problems carefully is 58%, the achievement of the indicator concludes the problem correctly, namely 42%.

Mathematical critical thinking ability in students with high self-confidence

Mathematical critical thinking skills in trigonometric equations that have high self-confidence are R₂₂.

13 10) X + 110 X = V= , 0 = $\frac{2(\sqrt{3}}{2}(0) \times + \frac{1}{2}(0) \times + \frac{1}{2}(0) \times \frac{1}{2}$ $\frac{2}{2} \left(\frac{110}{5} \left(\frac{\pi}{3} \right) \frac{101 \times + 101}{5} \left(\frac{\pi}{3} \right) \frac{101 \times 1}{5} = \sqrt{2} \right)$ $\frac{2\left(\frac{1}{3}\left(\frac{\pi}{3}\right) + x\right)}{2} = \sqrt{2}$ $I(n \left(\frac{\pi}{3} + X\right) = \frac{\sqrt{2}}{3}$ $(-\infty, 1) = \frac{\pi}{4} + \frac{\pi}$ $\frac{\pi}{3} + \frac{\pi}{4} + \frac{\pi}$ $\frac{x = \pi}{4} - \frac{\pi}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ = 312-412 + K-360 $\frac{1}{12} \times = -\frac{\pi}{12} + \kappa \cdot 360$ $\frac{1}{3} \int \left(\frac{\pi}{3} + \frac{\pi}{3} \right) = f(0) \left(\frac{\pi}{4} \right)$ $\frac{\hbar}{3} + \frac{1}{4} = (\pi - \pi) + \kappa \cdot 360$ $\frac{X = 3\pi}{4} \cdot \frac{\pi}{3} + K \cdot 360$ $= 9\pi - 4\pi + K.360$ = 5 10 + K.360

Figure 1. Answer R_{22} in question number 1

Based on Figure 1 shows that R_{22} can answer the problem correctly but is less precise in the form of the questions given. The indicators clarify or rediscover important questions in the problem and conclude that the problem is not listed.

2110 (3×+130) + 1=0 0 ≤ x ≤ 360
110(2x+120) = -1
3
110 (2×+(20) = (10 210°
2×+120 = 210° + K.360
2 X = 210° - 120° + K.360°
x = 90° t K. 180°
$K=0 \rightarrow x = 90^{\circ}$
$K = i \longrightarrow X = 2 \neq 0^{\circ}$
sin (2x + 120) = 111 210°
2× + 120 = (180°-210°) + K.360°
1× + 120 = - 30" + K . 360"
$2X = -30^{\circ} - (30^{\circ} + K \cdot 360^{\circ})$
× = -75° + K. 180°
$K=1 \rightarrow X = 105^{\circ}$
K=2 → x = 285°
HP = 2 (05°, 270°, 285° 3

Figure 2. Answer R₂₂ in question number 2

Based on Figure 2 shows that R_{22} cannot answer the problem correctly. The indicators for clarifying or rediscovering important questions are not listed. R_{22} has not met the indicators of analyzing and solving problems appropriately, so R_{22} answer to question number 2 is not quite right.

After an interview with R_{22} , it was stated that R_{22} had difficulty in solving the problems given. In solving these problems, R_{22} looked for solutions on the internet, but R_{22} answered according to his ability without the help of friends.

Based on the answers to the mathematical critical thinking ability test and the results of interviews, researchers can conclude that R_{22} has not met the indicators of analyzing and solving problems correctly, as can be seen in the answers to question number 2, and cannot rediscover important questions in the problems given, so it can be said that R_{22} has the ability low category mathematical critical thinking.

Mathematical critical thinking ability in students with medium confidence

The results of the analysis of mathematical critical thinking skills on the material of trigonometric equations that have moderate confidence are R_{16} .

Brosk + Sink + 15	057 5 2T	HP-15 TL + K 2T	L atou - 7 + K. 21 1
η.		12	12
a costa + 6 smx	- × costx-e	•)	
	θ = tan" (₽)	
	> K = 102+	b ²	1
	~x=12	2005 (x-1) = 12	
¥ = 1(-5)2 +	12 = 2	$\cos(x - \frac{\pi}{2}) = \frac{12}{2}$	co (1)
0 = tan" (4	$() \cdot \frac{\pi}{2}$	γ- <u>π</u> = ±	<u>1</u> + k. 2n
	l l	6	4
x - 11	= TL + K. 2TL	χ- <u>π</u> ;	-n + k.2n
6	4	6	1
Ŷ	= 272+K.272	X	= - TL + k 2TL
	īr		12
	=0, x= 5TL		$4 = 1$, $\chi = \frac{23}{12}$

Figure 3. Answer R₁₆ in question number 1

2.	2510 (2x+120)+1=0, 0Ex£360	
	(10 251 (2x+120) = -1	
	Sin (272+120°) = - 1/2	
	Sin (2x+120) = Sin 210	2x + 120' = (180-210) + k . 360'
	2x + 120° = 210° + 16. 360°	2 + 120 = -30 + 4.360
	$2\chi = 90 + k.360$	27 = -150 + k .360
	× = 45 + K. 180	× = -75 + K.360
	HP = {45°, 105°, 225°, 285°}	

Figure 4. Answer R16 in question number 2

Based on Figure 3 shows that R_{16} can identify the given problem so that R_{16} can answer the question correctly. However, it still does not meet the indicators of analyzing or describing problem-solving strategies. R_{16} is not complete in describing problem-solving. It can be seen when determining the value of x. The indicator concludes that the problem is not listed.

Based on Figure 4, R_{16} can identify the given problem and write down the set of solutions correctly. However, R_{16} is less careful in solving the problem. It can be seen that R_{16} immediately writes down the set of solutions without describing the solution steps.

After the interview with R_{16} , it was conveyed that R_{16} could understand the given problem on the condition that he reread the material related to the problem. For question number 1 R_{16} , they still do not understand to describe problem-solving. It was also stated that R_{16} could not solve the problem given carefully. In solving the problem, R_{16} looked for ways in books and the internet but did not copy a friend's work.

Based on the answers to the R_{16} mathematical critical thinking ability test and the results of the interviews, researchers can conclude that R_{16} is quite good in indicators of identifying and concluding the problems given. However, it still does not meet the indicators of solving the problem carefully. It can be seen that R_{16} immediately concludes the problem without writing down the steps to solve it.

Mathematical critical thinking skills in students with low self confidence

The results of the analysis of mathematical critical thinking skills on the material of trigonometric equations that have low self-confidence are R_{29} .

1. 13 cos x + sin x . 12.	OSXS 2R , HP = LIZ T + K 2R atou
T + x . 2x3	
12	
Laces x + bsin x	• K (01 [x - 0]
•	0 . tan" (=)
•	K = Va + 6"
-> J3 cos x + sin x = J2	$\frac{1}{2} \cos \left(x - \frac{\pi}{6}\right) = \sqrt{2}$
K = V (1/3)2 + 12 = 2	$\left(\cos\left(x - \frac{\pi}{6}\right) + \frac{\sqrt{2}}{2} + \cos\left(\frac{\pi}{4}\right) \right)$
$\theta = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{2}$	$\left(\begin{array}{c} \chi - \frac{R}{6} + \frac{T}{9} + K \cdot 2R \right)$
$X = \frac{\pi}{\zeta} + \frac{\pi}{4} + \kappa \cdot \lambda \tau$	$\chi = \frac{\pi}{k} = -\frac{\pi}{4} + k \cdot 2\pi$
× = 5 1 + K - 21	$\chi = \frac{-\pi}{12} + \kappa \cdot 2\pi$
K = 0 , X = 5 TL	k = 1 , κ = <u>1.3</u> π

Figure 5. Answer R₂₉ in question number 1

Based on Figure 5 shows that R_{29} can identify the given problem. However, it still does not meet the indicators of analyzing or describing problem-solving strategies. R_{29} is not complete in describing problem-solving. The indicators for concluding the problem are also not listed.

2.	2 sin (2x + 120) + 1 = 0, 05 x \$ 360°
	4 2 sin (2x + 120°) = -1
	sin (2x+120') -1/2
	sin (2x + 120°) = sin 210'
	2x + 120 = 210 + K 360
	2x = go + K · 360
	× = 45 + K · 180
	HP = { 45, 105, 225, 285 }

Based on Figure 6 shows that R_{29} writes the solution set correctly. However, on the indicators of analyzing or describing problem-solving strategies, R_{29} is incomplete in describing problem-solving. It is also seen that R_{29} is less accurate in indicators of solving problems. Of the two equations that should be determined, it can be seen that R_{29} only wrote one of them. After conducting an interview with R_{29} , it was stated that R_{29} had difficulty understanding the meaning of the questions given. It was also stated that R_{29} worked on the questions given by himself without the help of friends because the material given had already been taught.

Based on the answers to the R_{29} mathematical critical thinking ability test and the results of the interview, the researcher can conclude that R_{29} is only able to fulfill one indicator, namely identifying the given problem. R_{29} had difficulty in analyzing and solving the problems given, even though the material in the questions given had already been studied. Therefore, it can be said that R_{29} has a low mathematical critical thinking ability.

Based on the description above shows that respondents with high self-confidence have low mathematical critical thinking skills. While respondents who have moderate self-confidence have good mathematical critical thinking skills, respondents who have low self-confidence have low mathematical critical thinking skills. So it can be concluded that students' self-confidence does not affect students' mathematical critical thinking skills. This condition is in accordance with the results of research conducted by Pebianto et al. (2019), which revealed that students' confidence in completing the mathematical critical thinking ability test had no effect on the results of the mathematical critical thinking ability test. Students' self-confidence had an effect of 14% on the ability to think mathematically. Critical thinking and the other 86% are influenced by other factors outside the students' self-confidence (Pebianto et al., 2019).

This is also reinforced by the results of Hajar and Minarti's research (2019), which shows that students' self-confidence has no influence on mathematical critical thinking skills, other factors that can affect students' critical thinking skills are willingness to learn to solve math problems, motivation learning and self efficacy (Hajar & Minarti, 2019).

CONCLUSION

Based on the results of research and discussion, it was found that there was no significant effect between students' self-confidence on mathematical critical thinking skills. This can be seen in students with high self-confidence who are not able to solve the problems given. The results of the analysis of students' mathematical critical thinking skills are in a low category, with a classical average of 60%. The achievement of indicators to identify or formulate information clearly is 92%, the achievement of indicators to clarify or rediscover important questions in the problem is 25%, the achievement of indicators to analyze or describe problem-solving strategies is 83%, the achievement of indicators to evaluate or solve problems carefully is 58%, the achievement of the indicator concludes the problem correctly, namely 42%.

ACKNOWLEDGEMENT

Thanks to students in class XI MIPA 3 of SMA N 2 Bantul for their participation in this research.

REFERENCES

- Agryvita, Busnawir, & Sahidin, L. (2019). Analisis Kemampuan Berpikir Kritis Matematis Siswa Ditinjau dari Kepercayaan Diri (Self-Confidence). Journal of Honai Math, 2(2), 268–276. https://doi.org/10.30862/jhm.v2i2.68
- Amalia, N. F., Aini, L. N., & Makmun, S. (2020). Analisis Tingkat Kemampuan Berpikir Kritis Siswa Sekolah Dasar Ditinjau Dari Tingkat Kemamampuan Matematika. Jurnal IKA PGSD (Ikatan Alumni PGSD) UNARS, 8(1), 97. https://doi.org/10.36841/pgsdunars.v8i1.587

- Amri, S. (2018). Pengaruh Kepercayaan Diri (Self Confidence) Berbasis Ekstrakurikuler Pramuka Terhadap Prestasi Belajar Matematika Siswa Sma Negeri 6 Kota Bengkulu. Jurnal Pendidikan Matematika Raflesia, 3(2), 156–168.
- Endaryono, & Azzahra, W. H. (2022). Perancangan Simulasi Pembuatan Kurva Fungsi Trigonometri Untuk Motif Kain Batik-Media Pembelajaran Trigonometri. 8(1), 1–16.
- Hajar, M. S., & Minarti, E. D. (2019). Pengaruh Self Confidence Siswa SMP terhadap Kemampuan Berpikir Kritis Matematis. MAJAMATH: Jurnal Matematika Dan Pendidikan Matematika, 2(1), 1. https://doi.org/10.36815/majamath.v2i1.293
- Hidayah, R., Salimi, M., & Susiani, T. (2017). Critical Thinking Skill: Konsep dan Indikator Penilaian. Taman Cendekia, 1, 127–133.
- Kemdikbud. (2017). Panduan Penilaian oleh Pendidik dan Satuan Pendidikan Atas (T. D. P. SMP (ed.)). Kementerian Pendidikan dan Kebudayaan Direktorat Jenderal Pendidikan Dasar dan Menengah. http://repositori.kemdikbud.go.id/18051/1/1. Panduan Penilaian SMP -Cetakan Keempat 2017.pdf
- Nurapipah, S. (2019). Studi Kasus Kemampuan Berpikir Kritis Matematis Siswa Dalam Menyelesaikan Soal Trigonometri. Prosiding Sesiomadika, 742–748. https://journal.unsika.ac.id/index.php/sesiomadika/article/view/2727
- Oktaviani, W., Kristin, F., & Anugraheni, I. (2019). Penerapan Model Pembelajaran Discovery Learning Untuk Meningkatkan Kemampuan Berpikir Kritis dan Hasil Belajar Matematika Siswa Kelas 5 SD. Jurnal Basicedu, 3(2), 524–532.
- Pebianto, A., Gunawan, G., Yohana, R., & Nurjaman, A. (2019). Analisis Kemampuan Berpikir Kritis
 Siswa MTsN Kota Cimahi Pada Materi Persamaan Linear Dua Variabel Ditinjau dari
 Kepercayaan Diri. Journal on Education, 1(3)(03), 9–20.
 http://www.jonedu.org/index.php/joe/article/view/109
- Setiana, D. S., & Purwoko, R. Y. (2020). Analisis kemampuan berpikir kritis ditinjau dari gaya belajar matematika siswa. 7(2), 163–177.
- Wicaksono, B. D., & Prihatnani, E. (2019). Profil Berpikir Kritis Matematis Mahasiswa dalam Menyelesaikan Soal Trigonometri Ditinjau dari Tingkat Kepercayaan Diri. Mosharafa: Jurnal Pendidikan Matematika, 8(1), 71–82. https://doi.org/10.31980/mosharafa.v8i1.406
- Yusmanto, & Herman, T. (2016). Pengaruh Penerapan Model Pembelajaran Discovery Learning Terhadap Peningkatan Kemampuan Berpikir Kritis Matematis dan Self Confidence Siswa Kelas V Sekolah Dasar. Jurnal Pendidikan Dasar, EduHumaniora, 7(2). https://doi.org/s://doi.org/10.17509/eh.v7i2.2705

ICE