MOLECULAR DOCKING OF XIAMYCIN DERIVATIVES ON RNA-DEPENDENT RNA POLYMERASE AS A SARS-COV-2 VIRUS REPLICATION INHIBITOR

Hamnah Al Atsariyah Al Atsariyah, Dwi Utami, Andika Andika

Abstract


Xiamycin is a pentacyclic indolosesquiterpenoid derived from mangrove endophytes was studied in vitro to inhibit the replication of porcine epidemic diarrhea virus and human immunodeficiency virus. This study aimed to examine the potential pharmacological activity of xiamycin derivatives as an inhibitor of SARS-CoV-2 virus replication through molecular docking and analyze their pharmacokinetic and toxicity profiles.

The selection of comparison pharmaceutical agents used ChemDes. Xiamycin derivatives as test compounds and molnupiravir as inhibitors were screened for Lipinski's Rule of Five. The identification of RdRp as a molecular target was confirmed through the PASSonline program. The RdRp receptor was selected based on an assessment of receptor quality via the RCSB PDB and PDBsum. Minimization energy used Avogadro and Swiss PDB programs. Receptor and ligand were docked by Autodock. Visualization of molecular docking results with Biovia and Pymol. ADMET profile assessment using the ADMETlab 2.0 program.

This study shows that xiamycin E had the highest pharmacological potential compared to other xiamycin derivatives and molnupiravir with an energy affinity of -6.92 kcal/mol, an inhibitory constant of 8.41 M, and knows three key amino acid residues in the NiRAN domain, namely amino acid ASN 209, LYS 50, and ASP 218. ADMET prediction shows that xiamycin E is ideal for certain parameters and not ideal for certain parameters.

The xiamycin derivatives have the potential to be developed as an antiviral. Optimization of xiamycin E as a candidate for the RdRp inhibitor of SARS-CoV-2 requires further studies related to the structure tissue exposure/selectivity activity relationship.


Full Text:

PDF

References


Balle T, Liljefors T. 2016. Molecular Recognition. Di dalam Strømgaard K, Krogsgaard-Larsen P, Madsen U (Eds.), Textbook of Drug Design and Discovery (5th ed.). CRC Press.

Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced drug delivery reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007

Biovia. (2019). Comprehensive Modeling and Simulations for Life Sciences. Dassault Systemes. https://crrd.kmu.edu.tw/images/studyonline/108.03.19-Discovery_Studio_%E8%A8%93%E7%B7%B4%E8%AA%B2%E7%A8%8B_20190319.pdf

Blaney J. (2012). A very short history of structure-based design: how did we get here and where do we need to go?. Journal of computer-aided molecular design. 26(1), 13–14. https://doi.org/10.1007/s10822-011-9518-x

Carvalho, A. T., Fernandes, P. A., & Ramos, M. J. (2011). The Catalytic Mechanism of RNA Polymerase II. Journal of chemical theory and computation, 7(4), 1177–1188. https://doi.org/10.1021/ct100579w

Dhorajiwala, T. M., Halder, S. T., & Samant, L. (2019). Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals. Journal of Applied Biotechnology Reports, 6(3), 101-108.

Ding, L., Münch, J., Goerls, H., Maier, A., Fiebig, H.-H., Lin, W.-H., & Hertweck, C. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic & Medicinal Chemistry Letters, 20(22), 6685–6687.

Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. International journal of molecular sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144

EMA. Procedure under Article 5(3) of Regulation (EC) No 726/2004 Use of molnupiravir for the treatment of COVID-19. European Medicines Agency, assesment report.

Engh, R.A., & Huber, R. (1991). Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement. Acta Crystallographica Section A, 47, 392-400. https://doi.org/10.1107/S0108767391001071

Fortuna, A., Alves, G., & Falcao, A. (2011). In vitro and in vivo relevance of the P-glycoprotein probe substrates in drug discovery and development: focus on rhodamine 123, digoxin and talinolol. J Bioequiv Availab, 1(2), 1-23.

Kim, S. H., Ha, T. K., Oh, W. K., Shin, J., & Oh, D. C. (2016). Antiviral Indolosesquiterpenoid Xiamycins C-E from a Halophilic Actinomycete. Journal of natural products, 79(1), 51–58. https://doi.org/10.1021/acs.jnatprod.5b00634

Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-10280-3

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747

Lavecchia, A., & Cerchia, C. (2016). In silico methods to address polypharmacology: current status, applications and future perspectives. Drug discovery today, 21(2), 288–298. https://doi.org/10.1016/j.drudis.2015.12.007

Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: a critical review. Current medicinal chemistry, 20(23), 2839–2860. https://doi.org/10.2174/09298673113209990001

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 23(1-3): 3-25

Mackay, D.H.J., Cross, A.J., Hagler, A.T. (1989). The Role of Energy Minimization in Simulation Strategies of Biomolecular Systems. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_7

Martignoni, M., Groothuis, G. M., & de Kanter, R. (2006). Species Differences Between Mouse, Rat, Dog, Monkey and Human CYP-Mediated Drug Metabolism, Inhibition and Induction. Expert opinion on drug metabolism & toxicology, 2(6), 875–894. https://doi.org/10.1517/17425255.2.6.875

Merck. (2021). Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study. 1st October 2021. https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately-50-percent-compared-to-placebo-for-patients-with-mild-or-moderat/

Moore, T. J., Zhang, H., Anderson, G., & Alexander, G. C. (2018). Estimated Costs of Pivotal Trials for Novel Therapeutic Agents Approved by the US Food and Drug Administration, 2015-2016. JAMA internal medicine, 178(11), 1451–1457. https://doi.org/10.1001/jamainternmed.2018.3931

National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 145996610, EIDD-2801. Retrieved April 13, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/eidd-2801.

National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 38358410, Xiamycin. Retrieved February 7, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Xiamycin.

Naydenova, K., Muir, K. W., Wu, L. F., Zhang, Z., Coscia, F., Peet, M. J., Castro-Hartmann, P., Qian, P., Sader, K., Dent, K., Kimanius, D., Sutherland, J. D., Löwe, J., Barford, D., & Russo, C. J. (2021). Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences of the United States of America, 118(7), e2021946118. https://doi.org/10.1073/pnas.2021946118

Radji., M. (2005). Peranan Bioteknologi dan Mikroba Endofit dalam Pengembangan Obat Herbal. Pharmaceutical Sciences and Research (PSR). 2(3), 113-126.

Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?. Molecules (Basel, Switzerland), 23(5), 1038. https://doi.org/10.3390/molecules23051038

Robert, J., & Jarry, C. (2003). Multidrug Resistance Reversal Agents. Journal of medicinal chemistry, 46(23), 4805–4817. https://doi.org/10.1021/jm030183a

Sahoo, A., Fuloria, S., Swain, S. S., Panda, S. K., Sekar, M., Subramaniyan, V., Panda, M., Jena, A. K., Sathasivam, K. V., & Fuloria, N. K. (2021). Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines, 9(11), 1505. https://doi.org/10.3390/biomedicines9111505

SATGAS COVID-19. (2022). Peta Sebaran COVID-19. 13 April 2022. https://covid19.go.id/peta sebaran-covid19

Seelig A. (2020). P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Frontiers in oncology, 10, 576559. https://doi.org/10.3389/fonc.2020.576559

Shan, W., Zhou, Y., Liu, H., & Yu, X. (2018). Endophytic Actinomycetes from Tea Plants (Camellia sinensis): Isolation, Abundance, Antimicrobial, and Plant-Growth-Promoting Activities. BioMed research international, 2018, 1470305. https://doi.org/10.1155/2018/1470305

Shannon, A., Canard, B., Fattorini, V., Sama, B., Selisko, B., Feracci, M., Falcou, C., Gauffre, P., El-Kazzi, P., Decroly, E., Alvarez, K., Eydoux, C., Guillemot, J., Moussa, A., Good, S., Colla, P., Lin, K., Sommadossi, J., Zhu, Y., Delpal, A. (2022). A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nature communications, 13(1), 1-9. https://doi.org/10.1038/s41467-022-28113-1

Song, C. M., Lim, S. J., & Tong, J. C. (2009). Recent advances in computer-aided drug design. Briefings in bioinformatics, 10(5), 579–591. https://doi.org/10.1093/bib/bbp023

Srivalli, K. M. R., & Lakshmi, P. K. (2012). Overview of P-glycoprotein Inhibitors: a Rational Outlook. Brazilian Journal of Pharmaceutical Sciences, 48(3), 353-367.

Sun, D., Wei, Gao., Gu, Hu, Hu., Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it?. Acta Pharmaceutica Sinica B, 2211-3835. https://doi.org/10.1016/j.apsb.2022.02.002

Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural product reports, 18(4), 448–459. https://doi.org/10.1039/b100918o

ThermoFisher. (2020). The Role of ADME & Toxicology Studies in Drug Discovery & Development. 3rd October 2020. https://www.thermofisher.com/blog/connectedlab/the-role-of-adme-toxicology-studies-in-drug-discovery-development/

Wilamowski, M., Hammel, M., Leite, W., Zhang, Q., Kim, Y., Weiss, K.L., Jedrzejczak, R., Rosenberg, D.J., Fan, Y., Wower, J., Bierma, J.C., Sarker, A.H., Tsutakawa, S.E., Pingali, S.V., O’Neill, H.M., Joachimiak, A.J., & Hura, G.L. (2021). Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication. Biophysical Journal, 120, 3152 - 3165.

Williams, M. A., & Ladbury, J. E. (2003). Hydrogen bonds in protein‐ligand complexes. Protein-ligand interactions: from molecular recognition to drug design, 137-161.

Worldometer. (2022). COVID-19 Coronavirus Pandemic. 13 April 2022. https://www.worldometers.info/coronavirus/

Yasri, S., & Wiwanitki, V. (2022). Molnupiravir, favipiravir and other antiviral drugs with proposed potentials for management of COVID-19: a concern on antioxidant aspect. International journal of biochemistry and molecular biology, 13(1), 1–4.

Zhang, W. F., Stephen, P., Thériault, J. F., Wang, R., & Lin, S. X. (2020). Novel Coronavirus Polymerase and Nucleotidyl-Transferase Structures: Potential to Target New Outbreaks. The journal of physical chemistry letters, 11(11), 4430–4435. https://doi.org/10.1021/acs.jpclett.0c00571

Zhou, W., Yan, H., & Hao, Q. (2012). Analysis of Surface Structures of Hydrogen Bonding in Protein–Ligand Interactions Using the Alpha Shape Model. Chemical Physics Letters, 545, 125-131.


Refbacks

  • There are currently no refbacks.


Prosiding Seminar Nasional Farmasi Universitas Ahmad Dahlan
e-ISSN 2986-8858
Published by Universitas Ahmad Dahlan Yogyakarta Indonesia
Website: http://seminar.uad.ac.id/index.php/SNFUAD/index