
 

 

Proceedings of 1st Ahmad Dahlan International Conference on Mathematics and Mathematics Education 

Universitas Ahmad Dahlan, Yogyakarta, 13-14 October 2017 
 

112 
 

Seasonal test for non-stationary time series data by 

periodogram analysis 

Gumgum Darmawan, Budhi Handoko and  Defi Yusti  Faidah 

Department of Statistics, Faculty of Mathematics and Natural Science,Universitas 

Padjadjaran,Jatinangor-Sumedang 45363,Indonesia 

E-mail : gumgum@unpad.ac.id 

Abstract. Seasonal phenomenon is a common occurence in our daily activities. Many business 

and economic time series contain a seasonal phenomenon that repeats itself after a regular 

period of time. The smallest time period for this repetitive phenomenon is called the seasonal 

period. Seasonal test for time series data is well identified by Fisher’s exact test in 

Periodogram Analysis. However, this seasonal test is only accurate for stationary Seasonal 

time series data. So, in this research we apply seasonal test for non-stationary time series data 

from generated data. Performance of this test is determined by the  percentage  of fit 

identification. We apply this Periodogram Analysis to real data. 

1. Introduction 

 
In our daily life, seasonal phenomenon is commonly happened. Seasonal behaviour occurs in many 
periods, such as monthly, weekly and daily. Seasonal or periodic changes of days, weeks or months 
within the annual cycle. Periodicity means that the statistical characteristic changes periodically within 
the year. For example, in hydrologic data concerning river flows, we expect high runoff periods in the 
spring and flow periods in the summer. Thus, the river flow correlations between spring months may 
be different from the correlations between summer months.   

 In Economic area, most economic time series are likely to exhibit some degree of seasonal 
variation. An obvious example, known to everyone, is the existence of a ‘high’ and ‘low’ season for 
air transportation and other recreational activities. Perhaps less obvious, but equally important, is the 
presence of a seasonal pattern in most economic aggregates such as the index of production, price 
indicates, the unemployment rate and so on.  

The concept of periodically correlated processes was introduced by [1]. He gave a formal 

definition of periodic stationarity for a general periodic process. The first application of periodic time 

series models seems to have been by hydrologists [2]. They used the lag-one autoregressive (AR) 

modelling monthly stream flow. Since then there have been many discussion and summaries about 

periodic time series models  For example, [3] demonstrate the superiority of periodic autoregressive 

models among several other competitors in forecasting thirty monthly river flow time series. [4], 

studies some properties of the periodic autoregressive models using a related multivariate 

autoregressive representation. [5] show how periodic autoregressive moving average models may be 

as heterogeneous models. 

[6] dealt with moment estimation of parameters in periodic autoregressive (PAR) models. He 

showed that estimates of the seasonal parameters obtained by using the seasonal Yule-Walker 

equations possess many desirable properties, including maximum asymptotic efficiency under 

normality. [7] suggest estimating the parameters of PARMA models using the seasonal Yule-Walker 

equations. [8] proposed an algorithm for the maximum likelihood estimation for periodic ARMA 

models. [9] developed an algorithm for exact likelihood of periodic moving average models. [10] 

developed the innovations algorithm for estimation of PARMA model parameters. 

[11] examine the recursive prediction and likelihood evaluation techniques for PARMA 

models, which are extensions of [12] for ARMA series. [13] study correlation and partial auto-

correlation properties PARMA time series models.  
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However, to analyze the Data, it is important to check seasonality of time series data. [14] 

credits these arrangements of the table to Buys-Ballot; hence, the table has also been called the Buys-

Ballot table in the literature. Interested readers are referred to an excellent collection of articles edited 

by [15] and to some research papers on the topic such as [16], [17], [18], [19], and [20].      

Based on these papers, we proposed exact identification of seasonal time series data by 

periodogram analysis. [21] applied seasonal test for data that available in R software such as Lynx Pelt 

sales, UKDriverDeaths, Lynx, Nottem co2 and AirPassegers. So,The purposes of this study are to 

determine accuracy of periodogram analysis in detecting non-stationary seasonal time series data and 

to applicate in Indonesia economic data. 

2. Method  

In this study we use two methods, Periodogram Analysis and Fractionally difference. Periodogram 

analysis is used to detect hidden periodicity in time series and fractionally difference is used to detect 

rate of differencing (d).  

1.1. Periodogram  

The. periodogram is the Fourier transform of the autocovariance function. A periodogram is used to 

identify the dominant periods (or frequencies) of a time series.  This can be a helpful tool for 

identifying the dominant cyclical behaviour in a series, particularly when the cycles are not related to 

the commonly encountered monthly or quarterly seasonality. The equation of standard periodogram is 

as follows;  
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It was introduced by [22] to search a periodic component in a series. 

1.2. Fractionally Difference  

To identify rate of trend in time series data, we need tool for identifying this. Here, we use Geweke 

and Porter-Hudak method for identification rate of trend (d). Calculation of coefficient d is determined 

by a regression method.  
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2. Algorithm for non-stationary seasonal data detection. 

Step of seasonal test by Periodogram analysis as follow; : 

1. Given a time series of N observation, real or generated data. The specification of data is trend 

and seasonal pattern.  

2. Identify the non-stationary of data by GPH-Method, formula (2) . If the value of the d 

(differencing coefficient) is higher 0.5, then the data must be differenced.   

3. Fit the data to the second equation: 
 /2
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where k = 0,1,…,[n/2] and k  
is fourier frequency determined by  k = 2π.k / n. 

4. Compute ka and kb  by these formulas : 
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5. Compute value of ordinate ( )kI   by formula (1)  

6. Test for significance of every fourier frequency as follow; 

0H : 0    (data don’t have seasonal pattern) 

1H : 0   or 0   (data have seasonal pattern) 

Statistic test: 
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where, 
(1)

(1)( )I   : maximum ordinate of periodogram of fourier  frequency 

( )kI 
 

 : Value of periodogram ordinate at k-th’ fourier  frequency .  

Test criteria: 

Reject 0H  if T >gα with α = significant level. Value of gα can be seen at  table Fisher 

(Wei,2006). 

 Statistic test as follow: 
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Where   j = 1,2, …, (n-1)/2 and k=n/2. 

Test criteria: 

reject 0H  if F >F-table (2, n-3; α) where α = significant level. 

7. Build periodogram according to [22] to calculate the value of seasonal periodic: 
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Table 1 Periodogram Table 

K 
Frequency 

( k ) 
Period 

(P) 
( )kI   F 

1 1  1P  1( )I   1f  

2 2  2P  2( )I   2f  

: : : : : 

: : : : : 

n/2 n/2  n/2P  /2( )nI   n/2f  

Where
2

 .
k

P



     

8. Base on Periodogram table, we know the result of computation and compare F with F-table, 

υ1=2, υ2=n-3 and α = significant level.  If 0H  is significant then seasonal pattern is available 

in this time series data.  

9. Test for the value of period as follow ; 

0H : 0     

H1: 0   or 0    

Based on Equation (1) where 
(1)

(1)( )I  has got by the formula:  

(1)

(1)( )I  = max { ( )kI  }.     (8) 

Test criteria T from equation (6) where gα can be seen from table Fisher. 

Value of gα from table above divided by two classes : 

a. gα by exact formula by formula as follows:  
( 1)

1

1

( ) ( 1) (1 )  ,

jm
N

j

N
P T g jg

j







 
    

 
    (9) 

Where N=[n/2], g>0 , and m is the largest than 1/g. Thus, for any given significance level α, 

we can use equation (9) to find the critical value gα such that : 

( )  .P T g  
 

 

b. If the T value calculated from series is larger than gα , then we rejected the null 

hypothesis and conclude that the series Zt contains a periodic component. This test 

procedure is known as Fisher’s test. The critical values of T for the significance level 

α =0.05 as shown in table Fisher.. 

The third column in table Fisher is an approximation obtained by using only the first 

term in (9),  
1( ) (1 )  .NP T g N g          (10) 

The approximation is very close to exact result, hence, for most practical purposes, we can use 

equation (11) to derive the critical value gα for the test [23]. After comparing T with T-table, the result 

is H0 is rejected or no  in α =0.05, then the conclusion is that time series data have seasonal pattern or 

not in period p. 

 

3. SIMULATION STUDY AND APLICATION 

A detailed simulation study was conducted to evaluate accuracy of algorithm seasonal detection. Data 

from several different SARIMA (Seasonal Autoregressive Integrated Moving Average) models were 

generated. For each model, N = 500 ,100 and 60 with 100 repetitions. 

Intercept 0 and 10, differencing coefficient d =1 and D = {0;1} and P (Period) {6;12}. 

ARIMA coefficient we used first  4.0;0  4.0;0   3.0;0   3.0;0 , with
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)1,0(~ IIDNe . Open source software R 3.4.1 (OSSR) program was used to generate the SARIMA 

data. Some general conclusions can be drawn from this study. We used two packages for running this 

R macro, package fracdiff and package gsarima.  

Package fracdiff is used to detect trend pattern in data and package gsarima is used to 

generate non-stationary seasonal time series data. Both packages are external package so we should 

download from R website. 

In application, we used GDP (Gross Domestic Product) data from 2000 to 2016. Gross 

Domestic Product (GDP) is a monetary measure of the market value of all final goods and services 

produced in a period (quarterly or yearly) of time. Nominal GDP estimates are commonly used to 

determine the economic performance of a whole country or region, and to make international 

comparisons. 

 
Figure 1 Gross Domestic Product 2000-2016 

 

 
4. Result 

In this session, we show two results, the first is the result for simulation study and the second is about 

analysis for real data (GDP). According to session 4, Simulation study produced four output tables, the 

first D=1,d =1,intercept =10, the second D=0,d =1,intercept =10, the third D=1,d =1,intercept =0 and 

the last D=0,d =1,intercept =0. 

A detailed simulation study was conducted to demonstrate the effectiveness of the results of 

the previous section (algorithm for non-stationary seasonal data detection)  using simulated data from 

SARIMA Models. For each model, individual realization of N = 500,100 and 60 months of data were 

simulated and the innovation algorithm was used to obtain parameter estimates for each realization. In 

each case, generating data were obtained for k=100 iterations. A software R program was used to 

simulated the SARIMA samples as to make all the necessary calculations. 

 

   Table 2. D=1, d =1,intercept =10 

Data 
Model 

 

Period 

Sample 

N=500 N=100 N=60 

phi<-c(0) 
theta<-c(0.4) 

Phi<-c(0) 
Theta<-c(0.3) 

P=12 51 47 40 

P=6 82 52 55 

phi<-c(0,4) 
theta<-

c(0) 
Phi<-
c(0.3) 

Theta<-c(0) 

P=12 42 30 29 

P=6 52 44 40 
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It is observed that in model for D=1, d=1 and intercept =10, accuracy of detection seasonal models 

under 50% . However, for N=500 and P=6, The algorithm was accurate enough to detect non-

stationary-seasonal models,82% of seasonal model can be detected by the algorithm. It must be noted 

that N = 500 is the best result than any other sample. Moreover, Accuracy of algorithm for non-

stationary seasonal detection for the model with P=6 is better than that the model with P=12. 

Table 3. D=0, d =1,intercept =10 

Data 
Model 

 

Period 

Sample 

N=500 N=100 N=60 

phi<-c(0) 
theta<-c(0.4) 

Phi<-c(0) 
Theta<-c(0.3) 

P=12 64 54 52 

P=6 78 50 43 

phi<-c(0,4) 
theta<-

c(0) 
Phi<-
c(0.3) 

Theta<-c(0) 

P=12 67 42 31 

P=6 19 58 47 

 It is be seen that in Model D=0, d=1, and intercept =10, the best result was  in Moving 

average model in P=6 and N =500 with value =79 and the worst result was in Autoregressive model 

P=6 and N =500  .However, In N=100 the accuracy relatively stable the value between 42 and 58.  

Table 4. D=1, d =1,intercept =0 

Data 
Model 

 

Period 

Sample 

N=500 N=100 N=60 

phi<-c(0) 
theta<-c(0.4) 

Phi<-c(0) 
Theta<-c(0.3) 

P=12 51 38 20 

P=6 74 54 62 

phi<-c(0,4) 
theta<-

c(0) 
Phi<-
c(0.3) 

Theta<-c(0) 

P=12 39 21 28 

P=6 85 41 36 

  
 It is observed that in table 4, The Algorithm has good performance for identifying 

Autoregressive and Moving average models with N=500 and P =6 . Both models have values 74 and 

85. It is mean that for 100 seasonal data that had been generated from R macro, the macro of algorithm 

had successfully detected 74 and 85 seasonal data respectively. However, the macro of algorithm has 

bad performance for autoregressive models in both N=100 and N=60. Moreover, Moving average 

models was fail to detect by this macro, all values have under 50 in P = 12.   
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Table 5. D=0, d =1,intercept =0 

Data 
Model 

 

Period 

Sample 

N=500 N=100 N=60 

phi<-c(0) 
theta<-c(0.4) 

Phi<-c(0) 
Theta<-c(0.3) 

P=12 49 36 33 

P=6 84 42 42 

phi<-c(0,4) 
theta<-

c(0) 
Phi<-
c(0.3) 

Theta<-c(0) 

P=12 63 37 48 

P=6 21 46 33 

 It is be seen that for Models D=0,d =1 and intercept =0, the performance of macro algorithm 

has bad performance . Almost all of the values have under 50%. However, the best performance of this 

macro shown for Autoregressive model with N=500 and P=6. This data model has value 84.  

Analysis for real data, we use GDP data from 2000 to 2016. The first step is to identify trend 

from data by equation 2, the result is d  =  1.022. This value show us, that GDP data is non stationer, 

so we should difference this data with d=1.  

 After differencing data, we should calculate the Periodgram as shown in figure 2. The Value of 

Periodogram is used for hypothesis testing of availability seasonal pattern. The macro algorithm 

detected that this data were seasonal pattern (figure 3). 

 

 

Figure 2 Value of Periodogram from Data 
 

 
> Thitung 
[1] 0.41495 
> Ttabel 

    galpha  
0.13135 
[1] "Data mengikuti pola musiman" 
> round(Periode) 
[1] 4 

 
   Figure 3. Output Of  R Macro Algorithm 

It can be seen from figure 3, the last output is 4. It is mean that the seasonal period of the 

data is 4. This result was done by hypothesis testing with T distribution as explained in session 3 

above. 

 
5. Conclusion 

According simulation study, Seasonal Testing with Periodogram Analysis approach has fairly good 

accuracy for seasonal time series data with period 6 and large sample (N=500). For non-stationary 

Seasonal time series data with Period 12, the algorithm should be modified with another periodogram. 

The last analysis, in real data, the algorithm could detect seasonal patterns in the data. compared to the 

seasonal view of plot data this result was accurate. 
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