Kajian Karakteristik Municipal Solid Waste dan Potensi Waste to Energy di Yogyakarta

M Idris, Martomo Setyawan, Siti Jamilatun, Hutri Puspita Sari, Lutfi Jihandari

Abstract


Jumlah penduduk di Yogyakarta mencapai 3.668.719 jiwa yang dapat memproduksi municipal solid waste (MSW) sebesar 1.506,77 ton/hari, sehingga Yogyakarta menghadapi tantangan signifikan dalam pengelolaan MSW. Peningkatan volume MSW ini tidak hanya menjadi beban bagi sistem pengelolaan MSW yang ada, tetapi juga menimbulkan berbagai masalah lingkungan dan kesehatan bagi masyarakat jika tidak ditangani dengan baik. Oleh karena itu, dilakukan studi literatur ini yang bertujuan untuk menganalisis komposisi dan karakteristik MSW, serta mengevaluasi berbagai teknologi waste to energy (WtE) yang potensial untuk diterapkan di daerah ini. Hasil analisis menunjukkan bahwa MSW di Yogyakarta didominasi oleh sisa makanan sebesar 50,56%, kemudian diikuti oleh sampah plastik sebesar 27,94%, dan kertas/karton sebesar 13,63%. Komposisi ini mencerminkan pola konsumsi dan gaya hidup masyarakat perkotaan. Karakteristik fisik-kimia sampah bervariasi, dengan plastik memiliki nilai kalor tertinggi sebesar 30,7 MJ/kg, diikuti oleh karet/kulit sebesar 25,45 MJ/kg dan kertas/karton sebesar 12,4 MJ/kg. Variasi ini mempengaruhi potensi energi yang dapat dihasilkan dari berbagai jenis sampah sehingga pemilihan teknologi yang tepat untuk mengolah MSW menjadi energi sangat diperlukan untuk memaksimalkan potensi energi dari MSW. Teknologi WtE yang dibahas meliputi teknologi insinerasi, gasifikasi, pirolisis, anaerobic digestion, dan dark fermentation. Teknologi tersebut menghasilkan produk energi yang berbeda-beda seperti listrik, panas, syngas, bio-oil, biochar, biogas dan hidrogen. Implementasi teknologi WtE di Yogyakarta menghadapi tantangan seperti kebutuhan investasi besar, kompleksitas operasional, dan rendahnya tingkat pemisahan MSW di sumber. Sehingga proses optimalisasi pengelolaan MSW dan penerapan teknologi WtE di Yogyakarta memerlukan pendekatan terpadu yang mempertimbangkan aspek teknis, ekonomi, dan sosial, serta peningkatan partisipasi masyarakat dalam pengelolaan sampah.


Keywords


Municipal solid waste; Tantangan; Teknologi; Waste to energy; Yogyakarta.

Full Text:

PDF

References


Aini, N. A., Jamilatun, S., & Pitoyo, J. (2022). Pengaruh Tipe Biomassa pada Produk Pirolisis : A Review. Agroindustrial Technology Journal, 6(1), 89–101. https://doi.org/10.21111/atj.v6i1.7559

BPS. (2020). Sensus Penduduk 2020. Badan Pusat Statistik. Diakses dari: https://sensus.bps.go.id/main/index/sp2020

Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291. https://doi.org/10.1016/j.jenvman.2021.112661

Dastjerdi, B., Strezov, V., Kumar, R., & Behnia, M. (2019). An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia. Renewable and Sustainable Energy Reviews, 115. https://doi.org/10.1016/j.rser.2019.109398

Elsha, W., & Budiarto, R. (2023). Comparative Study of Waste to Energy (WtE) Technology in Municipal Solid Waste Management (MSWM) in Yogyakarta. Journal of Industrial Engineering and Education, 1(2), 53–65. https://jiee.bksti.org/index.php/iee/article/view/19

Esercizio, N., Lanzilli, M., Vastano, M., Landi, S., Xu, Z., Gallo, C., Nuzzo, G., Manzo, E., Fontana, A., & D’Ippolito, G. (2021). Fermentation of biodegradable organic waste by the family thermotogaceae. Resources, 10(4). https://doi.org/10.3390/resources10040034

Febriani, A. V., Idris, M., & Hakim, L. (2024). Tranformasi Minyak Jelantah menjadi Renewable Energy Dalam Perspektif Al Islam dan Kemuhammadiyahan. Jurnal Kemuhammadiyahan dan Integrasi Ilmu, 2(2), 193-202.

Gandidi, I. M., Susila, M. D., & Pambudi, N. A. (2017). Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW) in Indonesia using non-isothermal and isothermal experimental. Case Studies in Thermal Engineering, 10, 357–361. https://doi.org/10.1016/j.csite.2017.08.003

Idris, M., Setyawan, M., & Mufrodi, Z. (2024). Teknologi Insinerasi Sebagai Solusi Pengolahan Sampah Perkotaan dan Pemulihan Energi : A Review. Seminar Nasional Sains Dan Teknologi 2024, April. https://jurnal.umj.ac.id/index.php/semnastek/article/view/22490/10451

Idris, M., Setyawan, M., & Suharto, T. E. (2024). Effect of Flow Rate Ratio of Air and Waste Cooking Oil on Combustion Temperature and Furnace Efficiency. Eksergi, 22(1), 25-32.

Inayat, A., Rocha-Meneses, L., Ghenai, C., Abdallah, M., Shanableh, A., Al-Ali, K., Alghfeli, A., & Alsuwaidi, R. (2022). Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass. Case Studies in Thermal Engineering, 31. https://doi.org/10.1016/j.csite.2022.101841

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science & Technology, 7(3), 565–582.

Jamilatun, S., Pitoyo, J., & Setyawan, M. (2023). Technical, Economic, and Environmental Review of Waste to Energy Technologies from Municipal Solid Waste. Jurnal Ilmu Lingkungan, 21(3), 581–593. https://doi.org/10.14710/jil.21.3.581-593

Jamilatun, S., & Setyawan, M. (2012). Kondensasi Asap Pirolisis Tempurung Kelapa Menjadi Asap Cair (Liquid Smoke) Berbasis pada Luas Transfer Perpindahan Panas. Symposium in Industrial Technology, 25–32.

Jurado, L., Papaefthimiou, V., Thomas, S., & Roger, A. C. (2021). Upgrading syngas from wood gasification through steam reforming of tars over highly active Ni-perovskite catalysts at relatively low temperature. Applied Catalysis B: Environmental, 299, 1–12. https://doi.org/10.1016/j.apcatb.2021.120687

Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 37(10), 8338–8342. https://doi.org/10.1016/j.ijhydene.2012.02.162

Lisbona, P., Pascual, S., & Pérez, V. (2023). Waste to energy: Trends and perspectives. Chemical Engineering Journal Advances, 14. https://doi.org/10.1016/j.ceja.2023.100494

Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B., & Pugazhendhi, A. (2020). Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment, 728. https://doi.org/10.1016/j.scitotenv.2020.138481

Nanda, M. A., Sugandi, W., Wijayanto, A. K., Imantho, H., Sutawijaya, A., Nelwan, L. O., Budiastra, I. W., & Seminar, K. B. (2023). The Waste-to-Energy (WtE) Technology to Support Alternative Fuels for Agriculture in the Context of Effective Solid Waste Management in the Jabodetabek Area, Indonesia. Energies, 16(24). https://doi.org/10.3390/en16247980

Nugraha, C. S., Darda, A. A., & Hermawan, W. F. (2020). Pengelolaan Sampah Melalui Empowerment Masyarakat dengan Perencanaan Pembangkit Listrik Tenaga Sampah Teknik Thermal Converter di DI TPST Piyungan. Jurnal Ilmiah Penalaran Dan Penelitian Mahasiswa, 4(1), 20–28. https://tirto.id/tpst-piyungan-jogjakarta-

Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery, 13, 8383–8401. https://doi.org/10.1007/s13399-020-00965-x/Published

Qonitan, F. D., Suryawan, I. W. K., & Rahman, A. (2021). Overview of Municipal Solid Waste Generation and Energy Utilization Potential in Major Cities of Indonesia. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012064

Qu, X., Zeng, H., Gao, Y., Mo, T., & Li, Y. (2022). Bio-hydrogen production by dark anaerobic fermentation of organic wastewater. Frontiers in Chemistry, 10(September), 1–16. https://doi.org/10.3389/fchem.2022.978907

Raharjo, S., & Ariska, Z. A. (2022). Analysis on Waste to Energy Potential of Padang Municipal Solid Waste for Sustainable Future. Jurnal Presipitasi, 19(2), 280–289.

Rhohman, F., & Muslimim Ilham, M. (2019). Analisa dan Evaluasi Rancang Bangun Insinerator Sederhana dalam Mengelola Sampah Rumah Tangga. Jurnal Mesin Nusantara, 2(1), 52–60.

Romianingsih, N. P. W. (2023). Waste to energy in Indonesia: opportunities and challenges. Journal of Sustainability, Society, and Eco-Welfare, 1(1), 60–69. https://doi.org/10.61511/jssew.v1i1.2023.180

Santos, R. E. dos, Santos, I. F. S. dos, Barros, R. M., Bernal, A. P., Tiago Filho, G. L., & Silva, F. das G. B. da. (2019). Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Journal of Environmental Management, 231, 198–206. https://doi.org/10.1016/j.jenvman.2018.10.015

Scarlat, N., Motola, V., Dallemand, J. F., Monforti-Ferrario, F., & Mofor, L. (2015). Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269–1286. https://doi.org/10.1016/j.rser.2015.05.067

Sevillano, C. A., Pesantes, A. A., Peña Carpio, E., Martínez, E. J., & Gómez, X. (2021). Anaerobic digestion for producing renewable energy-the evolution of this technology in a new uncertain scenario. Entropy, 23(2), 1–23. https://doi.org/10.3390/e23020145

Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Science of the Total Environment, 713, 1–13. https://doi.org/10.1016/j.scitotenv.2020.136633

Shovon, S. M., Akash, F. A., Rahman, W., Rahman, M. A., Chakraborty, P., Hossain, H. M. Z., & Monir, M. U. (2024). Strategies of managing solid waste and energy recovery for a developing country – A review. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24736

Sihombing, A. L. S. M., & Darmawan, R. (2020). Municipal Solid Waste Characteristic and Energy Potential in Piyungan Landfill. Applied Mechanics and Materials, 898, 58–63. https://doi.org/10.4028/www.scientific.net/amm.898.58

SIPSN. (2023a). Komposisi Sampah Berdasarkan Jenisnya di Yogyakarta. Kementerian Lingkungan Hidup Dan Kehutanan. Diakses dari: https://sipsn.menlhk.go.id/sipsn/public/data/komposisi

SIPSN. (2023b). Komposisi Sampah Berdasarkan Sumbernya di Yogyakarta. Kementerian Lingkungan Hidup Dan Kehutanan. Diakses dari: https://sipsn.menlhk.go.id/sipsn/public/data/sumber

SIPSN. (2023c). Timbulan Sampah Yogyakarta. Kementerian Lingkungan Hidup Dan Kehutanan. Diakses dari: https://sipsn.menlhk.go.id/sipsn/public/data/timbulan

Soria-Verdugo, A., Cano-Pleite, E., Passalacqua, A., & Fox, R. O. (2023). Effect of particle shape on biomass pyrolysis in a bubbling fluidized bed. Fuel, 339. https://doi.org/10.1016/j.fuel.2022.127365

Talapko, D., Talapko, J., Erić, I., & Škrlec, I. (2023). Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation. Energies, 16(8), 1–16. https://doi.org/10.3390/en16083321

Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., & Chu, Y. M. (2021). Prospects of Bioenergy Production From Organic Waste Using Anaerobic Digestion Technology: A Mini Review. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.627093

Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. In Renewable and Sustainable Energy Reviews (Vol. 36, pp. 107–122). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.04.024


Refbacks

  • There are currently no refbacks.