Review: Efektivitas Dark Fermentation, Photo Fermentation dan Kombinasi Keduanya dalam Mengkonversi Sampah Menjadi Hidrogen

Budi Setya Wardhana, Farrah Fadhillah Hanum, Zen Adi Laksana, Siti Jamilatun, Annisa Vada Febriani

Abstract


Peningkatan populasi dan gaya hidup modern telah meningkatkan jumlah sampah global, termasuk di Indonesia yang memiliki populasi besar. Pengolahan sampah secara biologis menawarkan peluang untuk menghasilkan hidrogen sebagai energi terbarukan melalui dark fermentation dan photo fermentation, serta kombinasi keduanya. Dark fermentation menghasilkan hidrogen secara anaerob tanpa cahaya, sedangkan photo fermentation menggunakan energi cahaya untuk meningkatkan produksi hidrogen dari produk samping dark fermentation. Penelitian ini mengevaluasi efektivitas ketiga metode tersebut, dengan hasil tertinggi pada kombinasi dark dan photo fermentation, menghasilkan 112,3 mL H2/gr substrat pada suhu optimal 55°C. Photo fermentation meningkatkan produksi hidrogen sebesar 30% dari hasil dark fermentation. Penggunaan mikroba termofilik dan sinar matahari juga meningkatkan efisiensi proses. Hasil ini menunjukkan potensi besar dalam pengembangan energi terbarukan berbasis sampah.

Keywords


Dark fermentation; Photo fermentation; Hidrogen; Sampah; Kombinasi fermentasi

Full Text:

PDF

References


Adami, L., & Schiavon, M. (2021). From Circular Economy to Circular Ecology : A Review on the Solution of Environmental Problems through Circular Waste Management Approaches. Sustainability, 13(925), 1–20. https://doi.org/10.3390/su13020925

Albuquerque, M. M., Sartor, G. de B., Martinez-Burgos, W. J., Scapini, T., Edwiges, T., Soccol, C. R., & Medeiros, A. B. P. (2024). Biohydrogen Produced via Dark Fermentation: A Review. Methane, 3(3), 500–532. https://doi.org/10.3390/methane3030029

Badan Pusat Statistik. (2021). Hasil Sensus Penduduk 2020. In Berita Resmi Statistik (Issue 27). https://www.bps.go.id/id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk--sp2020--pada-september-2020-mencatat-jumlah-penduduk-sebesar-270-20-juta-jiwa-.html

Badan Pusat Statistik. (2022). Pertumbuhan Ekonomi Indonesia Triwulan IV-2021. Berita Resmi Statistik, 14, 1–16. https://www.bps.go.id/id/pressrelease/2022/02/07/1911/ekonomi-indonesia-triwulan-iv-2021-tumbuh-5-02-persen--y-on-y-.html

Barghash, H., Okedu, K. E., & Balushi, A. Al. (2021). Bio-Hydrogen Production Using Land fi ll Leachate Considering Different Photo-Fermentation Processes. Frontiers in Bioengineering and Biotechnology, 9, 1–12. https://doi.org/10.3389/fbioe.2021.644065

D’Silva, T. C., Khan, S. A., Kumar, S., Kumar, D., Isha, A., Deb, S., Yadav, S., Illathukandy, B., Chandra, R., Vijay, V. K., Subbarao, P. M. V, Bagi, Z., Kovács, K. L., Yu, L., Gandhi, B. P., & Semple, K. T. (2023). Biohydrogen production through dark fermentation from waste biomass: Current status and future perspectives on biorefinery development. Fuel, 350, 128842. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128842

Damayanti, P., Moersidik, S. S., & Haryanto, J. T. (2021). Waste to Energy in Sunter , Jakarta , Indonesia : Plans and Challenges. IOP Conf. Series: Earth and Environmental Science, 1–5. https://doi.org/10.1088/1755-1315/940/1/012033

Dari, D. N., Freitas, I. S., Izaias, F., Leandro, R., Melo, F., Moreira, K., Sousa, S., Gonçalves, P., Junior, D. S., Cavalcante, G., Sim, F., Serpa, J. D. F., Souza, M. C. M. De, & Santos, C. S. (2024). An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation : A Comprehensive Analysis. Biomass, 4(1), 132–163. https://doi.org/10.3390/biomass4010007

Dinesh, G. H., Nguyen, D. D., Ravindran, B., Chang, S. W., Vo, D. V. N., Bach, Q. V., Tran, H. N., Basu, M. J., Mohanrasu, K., Murugan, R. S., Swetha, T. A., Sivapraksh, G., & Arun, A. (2019). Simultaneous biohydrogen (H2) and bioplastic ( poly- b -hydroxybutyrate-PHB ) productions under dark , photo , and subsequent dark and photo fermentation utilizing various wastes. International Journal of Hydrogen Energy, 45(10), 5840–5853. https://doi.org/10.1016/j.ijhydene.2019.09.036

Dulta, K., Adeola, A. O., Ashaolu, S. E., Banji, T. I., & Ighalo, J. O. (2022). Biohydrogen production and its bioeconomic impact: a review. Waste Disposal & Sustainable Energy, 4(3), 219–230. https://doi.org/10.1007/s42768-022-00109-z

Edwards, F. (2021). Overcoming the social stigma of consuming food waste by dining at the Open Table. Agriculture and Human Values, 38(2), 397–409. https://doi.org/10.1007/s10460-020-10176-9

Elsharkawy, K., Alalm, M. G., Fujii, M., Afify, H., Tawfik, A., & Elsamadony, M. (2019). Paperboard mill wastewater treatment via combined dark and LED mediated fermentation in the absence of external chemical addition. Bioresource Technology, 295, 122312. https://doi.org/10.1016/j.biortech.2019.122312

Ghosh, S., Dutta, S., & Chowdhury, R. (2020). Ameliorated hydrogen production through integrated dark-photo fermentation in a flat plate photobioreactor: Mathematical modelling and optimization of energy efficiency. Energy Conversion and Management, 226(July), 113549. https://doi.org/10.1016/j.enconman.2020.113549

Gordon, J. A., Balta-Ozkan, N., & Nabavi, S. A. (2022). Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance. Applied Energy, 324, 119715. https://doi.org/10.1016/j.apenergy.2022.119715

Gupta, S., Fernandes, A., Lopes, A., Grasa, L., & Salafranca, J. (2024). Photo-Fermentative Bacteria Used for Hydrogen Production. Applied Sciences, 14(3), 1191. https://doi.org/10.3390/app14031191

Han, W., Ye, M., Zhu, A. J., Zhao, H. T., & Li, Y. F. (2015). Bioresource Technology Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. BIORESOURCE TECHNOLOGY, 191, 24–29. https://doi.org/10.1016/j.biortech.2015.04.120

Harirchi, S., Wainaina, S., Sar, T., Ali, S., & Parchami, M. (2022). Microbiological insights into anaerobic digestion for biogas , hydrogen or volatile fatty acids ( VFAs ): a review. Bioengineered, 13(3), 6521–6557. https://doi.org/10.1080/21655979.2022.2035986

Hossain, S., Saha, C. K., Ismail, M., Reza, T., Kabir, K. B., & Kirtania, K. (2023). Prospects and challenges of renewable hydrogen generation in Bangladesh. International Journal of Hydrogen Energy, 48(54), 20588–20612. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.03.059

Humas BRIN. (2024). 11,3 Juta Ton Sampah di Indonesia Tidak Terkelola dengan Baik. Badan Riset Dan Inovasi Nasional. https://brin.go.id/drid/posts/kabar/113-juta-ton-sampah-di-indonesia-tidak-terkelola-dengan-baik

Idris, M., Setyawan, M., & Mufrodi, Z. (2024). Teknologi Insinerasi Sebagai Solusi Pengolahan Sampah Perkotaan dan Pemulihan Energi : A Review. Seminar Nasional Sains Dan Teknologi 2024, April. https://jurnal.umj.ac.id/index.php/semnastek/article/view/22490/10451

Jiang, D., Ge, X., Zhang, T., & Liu, H. (2016). Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. International Journal of Hydrogen Energy, 41(38), 16778–16785. https://doi.org/10.1016/j.ijhydene.2016.07.129

Kamyab, S., Ataei, S. A., Tabatabaee, M., & Mirhosseinei, S. A. (2019). Optimization of bio-hydrogen production in dark fermentation using activated sludge and date syrup as inexpensive substrate. International Journal of Green Energy, 16(10), 763–769. https://doi.org/10.1080/15435075.2019.1631828

Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Bio-hydrogen production from cheese whey powder ( CWP ) solution : Comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 37(10), 8338–8342. https://doi.org/10.1016/j.ijhydene.2012.02.162

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0 Introduction -"Snapshot of Solid Waste Management to 2050.” Overview booklet. Urban Development Series, 1–38. https://openknowledge.worldbank.org/handle/10986/30317

Lu, C., Zhang, Z., Ge, X., Wang, Y., & Zhou, X. (2016). Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. International Journal of Hydrogen Energy, 41(31), 13399–13407. https://doi.org/10.1016/j.ijhydene.2016.06.101

Monroy, I., & Buitrón, G. (2020). Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria : A review. Journal of Biotechnology, 317(May), 39–47. https://doi.org/10.1016/j.jbiotec.2020.04.012

Moreno-Andrade, I., Moreno, G., Kumar, G., & Buitrón, G. (2015). Biohydrogen production from industrial wastewaters. Water Science & Technology, 71(1), 105–111. https://doi.org/10.2166/wst.2014.471

Niño-Navarro, C., Chairez, I., Christen, P., Canul-Chan, M., & García-Peña, E. I. (2020). Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population. Renewable Energy, 147, 924–936. https://doi.org/10.1016/j.renene.2019.09.024

Nobre, C., Mateos-pedrero, C., Longo, A., Rijo, B., Brito, P., & Ferreira, P. (2024). Renewable Hydrogen from Biomass : Technological Pathways and Economic Perspectives. ENERGIES, 17(14), 3530. https://doi.org/10.3390/en17143530

Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2023). Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery, 13, 8383–8401. https://doi.org/10.1007/s13399-020-00965-x

Ozmihci, S., & Kargi, F. (2010). Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. International Journal of Hydrogen Energy, 35(13), 6674–6680. https://doi.org/10.1016/j.ijhydene.2010.04.090

Perat, L., Escudi, R., Bernet, N., Richard, C., Mathilde, J., Juge, M., & Trably, E. (2024). New insights on waste mixing for enhanced fermentative hydrogen production. Process Safety and Environmental Protection, 188, 1326–1337. https://doi.org/10.1016/j.psep.2024.06.006

Permata, A. D., Malaya, A. P., & Kamal, U. (2024). STRATEGI PENGURANGAN PENGGUNAAN PLASTIK MELALUI IMPLEMENTASI ZERO WASTE MENUJU GAYA HIDUP RAMAH LINGKUNGAN. Jurnal Multidisiplin Ilmu Akademik, 1(3), 371–383. https://doi.org/10.61722/jmia.v1i3.1471

Qu, X., Zeng, H., Gao, Y., Mo, T., & Li, Y. (2022). Bio-hydrogen production by dark anaerobic fermentation of organic wastewater. Frontiers in Chemistry, 10(September), 1–16. https://doi.org/10.3389/fchem.2022.978907

Romianingsih, N. P. W. (2023). Waste to energy in Indonesia: opportunities and challenges. Journal oF Sustainability, Society and Eco-Welfare (JSSEW), 1(1), 60–69. https://doi.org/10.61511/jssew.v1i1.2023.180

Sağır, E., & Hallenbeck, P. C. (2019). Photofermentative Hydrogen Production. In Biomass, Biofuels, Biochemicals: Biohydrogen, Second Edition (pp. 141–157). https://doi.org/10.1016/B978-0-444-64203-5.00006-X

Samrot, A. V., Rajalakshmi, D., Sathiyasree, M., Saigeetha, S., Kasipandian, K., Valli, N., Jayshree, N., Prakash, P., & Shobana, N. (2023). A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612641

Seifert, K., Zagrodnik, R., Stodolny, M., & Łaniecki, M. (2018). Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation. Renewable Energy, 122, 526–532. https://doi.org/10.1016/j.renene.2018.01.105

Sekoai, P. T., Ghimire, A., Ezeokoli, O. T., Rao, S., Ngan, W. Y., Habimana, O., Yao, Y., Yang, P., Yiu Fung, A. H., Yoro, K. O., Daramola, M. O., & Hung, C. H. (2021). Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept. Renewable and Sustainable Energy Reviews, 143, 110971. https://doi.org/10.1016/j.rser.2021.110971

Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Science of the Total Environment Waste-to-energy nexus for circular economy and environmental protection : Recent trends in hydrogen energy. Science of the Total Environment, 713, 136633. https://doi.org/10.1016/j.scitotenv.2020.136633

Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W., & Mishra, P. K. (2017). Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology, 238, 552–558. https://doi.org/10.1016/j.biortech.2017.04.077

Talapko, D., Talapko, J., Eri, I., & Škrlec, I. (2023). Biological Hydrogen Production from Biowaste Using Dark Fermentation , Storage and Transportation. ENERGIES, 16(8), 1–16. https://doi.org/10.3390/en16083321

Turhal, S., Turanbaev, M., & Argun, H. (2019). Hydrogen production from melon and watermelon mixture by dark fermentation. International Journal of Hydrogen Energy, 44(34), 18811–18817. https://doi.org/10.1016/j.ijhydene.2018.10.011

Wadjeam, P., Reungsang, A., Imai, T., & Plangklang, P. (2019). Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. International Journal of Hydrogen Energy, 44(29), 14694–14706. https://doi.org/10.1016/j.ijhydene.2019.04.138

Wang, X., Fang, Y., Wang, Y., & Hu, J. (2018). Single-stage photo-fermentative hydrogen production from hydrolyzed straw biomass using Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 43(30), 13810–13820. https://doi.org/10.1016/j.ijhydene.2018.01.057

Xiao, L., Deng, Z., Fung, K. Y., & Ng, K. M. (2013). Biohydrogen generation from anaerobic digestion of food waste. International Journal of Hydrogen Energy, 38(32), 13907–13913. https://doi.org/10.1016/j.ijhydene.2013.08.072

Zagrodnik, R., & Łaniecki, M. (2017). Hydrogen production from starch by co- culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor. Bioresource Technology, 224, 298–306. https://doi.org/10.1016/j.biortech.2016.10.060

Zong, W., Yu, R., Zhang, P., Fan, M., & Zhou, Z. (2009). Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass and Bioenergy, 33(10), 1458–1463. https://doi.org/10.1016/j.biombioe.2009.06.008


Refbacks

  • There are currently no refbacks.