Review: Metode Konversi Termokimia Pada Limbah Biomassa Menjadi Biofuel

Rimadina Sukmasuci Lestari, Farrah Fadhillah Hanum, Siti Jamilatun

Abstract


Biofuel adalah jenis bahan bakar yang dihasilkan dari bahan organik, seperti tanaman dan limbah hewan. Biofuel dapat berupa cair (seperti biodiesel dan bioetanol) atau gas (seperti biogas) dan digunakan sebagai alternatif untuk bahan bakar fosil. Proses produksi biofuel melibatkan konversi biomassa melalui berbagai metode konversi termokimia dan biologis. Artikel ini membahas metode konversi termokimia yang digunakan untuk mengubah limbah biomassa menjadi biofuel. Dengan meningkatnya kebutuhan energi terbarukan dan pengurangan dampak lingkungan, konversi limbah biomassa menjadi biofuel menjadi alternatif yang menjanjikan. Metode yang diulas meliputi penerapan metode konversi termokimia seperti torefaksi, pirolisis, gasifikasi, dan transesterifikasi, masing-masing dengan keunggulan dan tantangan tersendiri. Karena itu, akan dibahas juga mengenai komposisi dan sifat sumber daya biomassa yang berbeda seperti bahan baku lignoselulosa, tanaman biji minyak, limbah padat perkotaan, limbah makanan dan kotoran hewan. Menjelaskan sifat-sifat biofuel yang berbeda seperti biochar, bio-oil, bio-crude oil, syngas dan biodiesel.


Keywords


Biofuel; Gasifikasi; Pirolisis; Torefaksi; Transesterifikasi.

Full Text:

PDF

References


Acharya, B., Dutta, A., & Minaret, J. (2015). A review of comparative studies on dry and wet torefaction. Energy Technology Review, 12, 26–37. https://doi.org/10.1002/etr.2330

Adnan, M. A., Xiong, Q., Muraza, O., & Hossain, M. M. (2020). Gasifikasi mikroalga basah untuk menghasilkan syngas kaya H2 dan listrik: Sebuah studi termodinamika mempertimbangkan analisis exergi. Renewable Energy, 147, 2195–2205. https://doi.org/10.1016/j.renene.2019.09.066

Alam, S. S., Churkunti, H., & Depcik, C. (2022). Perbandingan bahan bakar plastik bekas, biodiesel minyak jelantah, dan solar ultra-low sulfur menggunakan kerangka Well-to Exhaust. International Journal of Environmental Science and Technology, 19, 5857 5876. https://doi.org/10.1007/s13762-022-04220-3

Avhad, M. R., & Marchetti, J. M. (2015). Tinjauan tentang kemajuan terbaru dalam bahan katalitik untuk produksi biodiesel. Renewable and Sustainable Energy Reviews, 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.026

Bar-On, YM, Phillips, R., Milo, R., (2018). Distribusi biomassa di bumi. Prosiding Natl. Jurnal Ilmu Pengetahuan Acad. 115, 6506–6511. https://doi.org/10.1073/pnas.1711842115

Bashiri, H., & Pourbeiram, N. (2016). Production of biodiesel through transesterification of soybean oil: A Monte Carlo kinetic study. Journal of Molecular Liquids, 223, 10–15. https://doi.org/10.1016/j.molliq.2016.07.006

Basu, P., Sadhukhan, A. K., Gupta, P., Rao, S., Dhungana, A., & Acharya, B. (2014). Experimental and theoretical investigation of torefaction of large wet wood particles. Bioresource Technology, 159, 215–222. https://doi.org/10.1016/j.biortech.2014.02.022

Cekirge, H. M., & Raza, S. A. (2013). Assessment of the potential contribution of waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Policy, 75, 402–406. https://doi.org/10.1016/j.enpol.2014.09.014

Centi, G., & Perathoner, S. (2020). Chemistry and energy beyond fossil fuels: A perspective on the role of syngas from waste sources. Catalysis Today, 342, 4–12. https://doi.org/10.1016/j.cattod.2019.07.012

Chand, R., Borugadda, V. B., Qiu, M., & Dalai, A. K. (2019). Mengevaluasi potensi peningkatan bahan bakar nabati: Analisis komprehensif tentang bio-mentah dan bio residu dari pencairan hidrotermal biomassa pertanian. Applied Energy, 254, 113679. https://doi.org/10.1016/j.apenergy.2019.113679

Chen, W. H., Peng, J., & Bi, X. T. (2015). Recent advances in biomass torefaction, densification, and applications. Renewable and Sustainable Energy Reviews, 44, 847 866. https://doi.org/10.1016/j.rser.2015.01.019

Costello, R. and H. Chum. 1998. Biomass, bioenergy and carbon management. p. 11−17. In D. Wichert (Ed.). Bioenergy ’98: Expanding Bioenergy Partnerships. Omni Press, Madison.

Duti, I. J., Maliha, M., & Ahmed, S. (2016). Production of biodiesel from used cooking oil and its process simulation. Journal of Modern Science and Technology, 4, 50–62.

Fan, H., Chang, X., Wang, J., & Zhang, Z. (2020). Catalytic pyrolysis of agricultural and forestry waste in a fixed-bed reactor using K2CO3 as a catalyst. Waste Management Research, 38, 78–87. https://doi.org/10.1177/0734242X19888465

Gökkaya, D. S., Çokkuvvetli, T., Melengkung, L. M., Yuksel, M., & Balistik, L. (2019). Hydrothermal gasification of poplar wood chips using alkali, mineral, and metal containing activated carbon catalysts. Journal of Supercritical Fluids, 152, 104542. https://doi.org/10.1016/j.supflu.2019.104542

Gupta, S., Gupta, G. K., & Mondal, M. K. (2019). Pirolisis lambat dari kulit kenari yang diolah secara kimiawi untuk produk berharga: Pengaruh parameter proses dan analisis produk mendalam. Energy, 181, 665–676. https://doi.org/10.1016/j.energy.2019.05.086

Hai, I. U., Sher, F., Yaqoob, A., & Liu, H. (2019). Assessment of biomass energy potential for willow SRC wood chips in a pilot-scale fluidized bed gasifier. Fuel, 258, 116143. https://doi.org/10.1016/j.fuel.2019.116143

Hamad, M. A., Radwan, A. M., Heggo, D. A., & Moustafa, T. (2016). Production of hydrogen rich gas from catalytic biomass gasification. Renewable Energy, 85, 1290–1300. https://doi.org/10.1016/j.renene.2015.07.018

Hambali, E., S. Mujdalipah, A.H. Tambunan, A.W. Pattiwiri, dan R. Hendroko. 2007. Teknologi Bioenergi. Agromedia Pustaka, Jakarta

Hu, W., Zhou, X., Tan, J., Hou, J., Xie, Y., Wang, X., Wang, Y., & Zhang, Y. (2020). In situ transesterification of wet waste sludge via hydrothermal process: Biodiesel production and residue utilization. Bioenergy Biomass, 141, 105715. https://doi.org/10.1016/j.biombioe.2020.105715

Idris, M., Setyawan, M., & Mufrodi, Z. (2024). Teknologi Insinerasi Sebagai Solusi Pengolahan Sampah Perkotaan dan Pemulihan Energi : A Review. Seminar Nasional Sains Dan Teknologi 2024, April. https://jurnal.umj.ac.id/index.php/semnastek/article/view/22490/10451

Idris, M., Setyawan, M., & Suharto, T. E. (2024). Effect of Flow Rate Ratio of Air and Waste Cooking Oil on Combustion Temperature and Furnace Efficiency. Eksergi, 22(1), 25-32.

Itoh, T., Iwabuchi, K., Maemoku, N., Sasaki, I., & Taniguro, K. (2019). A new torefaction system using spontaneous heating of livestock manure under high pressure. Waste Management, 85, 66–72. https://doi.org/10.1016/j.wasman.2018.11.026

Jafar, M. M., Nahil, M. A., & Williams, P. T. (2020). Catalytic pyrolysis-hydrogenation of cellulose hemicellulose-lignin and agricultural biomass waste for synthetic natural gas production. Journal of Analytical and Applied Pyrolysis, 145, 104753. https://doi.org/10.1016/j.jaap.2020.104753

Katre, G., Raskar, S., Zinjarde, S., Kumar, V. R., Kulkarni, B. D., & RaviKumar, A. (2018). Optimization of in situ transesterification steps for biodiesel production using Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy, 142, 944–952. https://doi.org/10.1016/j.energy.2017.11.034

Kumar, R., & Strezov, V. (2021). Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, hydrogen production, and high-value-added products. Renewable and Sustainable Energy Reviews, 135, 110152. https://doi.org/10.1016/j.rser.2020.110152

Lê Thanh, K., Commandré, J. M., Valette, J., Volle, G., & Meyer, M. (2015). Detil identifikasi dan kuantifikasi dari condensablespesies yang dilepaskan selama torefaksi biomassa lignoselulosa. Proses Bahan Bakar Technol., 139, 226–235. https://doi.org/10.1016/j.procbio.2015.04.022

Lee, S. Y., Sankaran, R., Kunyah, K. W., Tan, C. H., Krishnamoorthy, R., Chu, D. T., & Show, P. L. (2019). Waste to bioenergy: A review of recent conversion technologies. BMC Energy, 1, 4. https://doi.org/10.1186/s42500-019-0004-5

Makwana, J. P., Pandey, J., & Mishra, G. (2019). Meningkatkan sifat gas produsen menggunakan gasifikasi suhu tinggi sekam padi dalam fluidized bed gasifier (FBG) skala pilot. Renewable Energy, 130, 943–951. https://doi.org/10.1016/j.renene.2018.06.008

Mohadesi, M., Aghel, B., Gouran, A., & Razmehgir, M. H. (2022). Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy, 242, 122536. https://doi.org/10.1016/j.energy.2021.122536

Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfill technology: A review. Chemical Engineering Letters, 19, 1433–1456. https://doi.org/10.1016/j.clepro.2021.02.011

Nanda, S., Dalai, A. K., Berruti, F., & Kozinski, J. A. (2016). Biochar sebagai sumber daya hayati yang luar biasa untuk energi, agronomi, penyerapan karbon, karbon aktif, dan material khusus. Waste and Biomass Valorization, 7(1), 201–235. https://doi.org/10.1007/s12649-016-9640-6

Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). Slow pyrolysis of agro-food waste and physicochemical characterization of biofuel products. Chemosphere, 285, 131431. https://doi.org/10.1016/j.chemosphere.2021.131431

Pradana, W., & Bunyamin, A. (2021). Pemanfaatan Kayu Kaliandra Dan Limbah Teh Sebagai Bahan Baku Biobriket. Jurnal Teknologi Pertanian Andalas, 25(1), 114–119. https://doi.org/10.25077/jtpa.25.1.46-51.2021

Ren, Y., Wang, C., Dia, Z., Qin, Y., & Li, Y. Y. (2022). Enhanced lipid biomethanation through high solids co-digestion with food waste: Biogas production and lipid degradation demonstrated by long-term continuous operation. Bioresource Technology, 348, 126750. https://doi.org/10.1016/j.biortech.2022.126750

Ruswin, N. D., & Adirizky, A. (2022). Prarancangan Pabrik Bioavtur Dari Cpo Kapasitas 5.213. 000 Kiloliter/Tahun.

Sahoo, S. S., Vijay, V. K., Chandra, R., & Kumar, H. (2021). Production and characterization of biochar from slow pyrolysis of gude stem and bamboo. Cleaner Engineering and Technology, 3, 100101. https://doi.org/10.1016/j.clet.2021.100101

Santos, R. G., & Alencar. (2020). Produksi syngas turunan biomassa melalui proses gasifikasi dan konversi katalitiknya menjadi bahan bakar dengan sintesis Fischer-Tropsch: Tinjauan. International Journal of Hydrogen Energy, 45, 18114–18132. https://doi.org/10.1016/j.ijhydene.2020.03.151

Sarker, T. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). A review of torefaction technology for enhancing lignocellulosic biomass into solid biofuel. BioEnergy Research, 14(2), 645–669. https://doi.org/10.1007/s12155-021-10215-2

Setiawan, I. M. P., Mardawati, E., & Nurliasari, D. (2022). Pengaruh Temperatur Pengeringan Serta Dimensi Biobriket Tempurung Kelapa Terhadap Kualitas dan Kelayakan Ekonominya. Jurnal Teknologi Pertanian Andalas, 26(2), 175– 182.

Singh, A., Nanda, S., Guayaquil-Sosa, J. F., & Berruti, F. (2021). Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. Bioresource Technology Reports, 99, S55–S68. https://doi.org/10.1016/j.biteb.2021.100209

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). Ulasan tentang bahan baku, proses produksi, dan hasil untuk berbagai generasi biodiesel. Fuel, 262, 116553. https://doi.org/10.1016/j.fuel.2019.116553

Singh, S., Chakraborty, J. P., & Mondal, M. K. (2020). Torefaction of Acacia nilotica: Distribusi oksigen dan mekanisme pemadatan karbon berdasarkan analisis mendalam terhadap produk padat, cair, dan gas. Bahan Bakar Energi, 34, 12586–12597. https://doi.org/10.1016/j.bfa.2020.12586

Rezania, S., Oryani, B., Taman, J., Hasemi, B., Yadav, K. K., Kwon, E. E., Hur, J., & Cho, J. (2019). Tinjauan tentang transesterifikasi sumber non-makanan untuk produksi biodiesel dengan fokus pada aspek ekonomi, sifat bahan bakar, dan aplikasi produk sampingan. Energy Conversion and Management, 201, 112155. https://doi.org/10.1016/j.enconman.2019.112155

Vaish, S., Kaur, G., Sharma, N. K., & Gakkhar, N. (2022). Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context. Sustainability, 14(5077), 1–25. https://doi.org/10.3390/su14095077

Vamvuka, D., Karouki, E., Sfakiotakis, S., & Salatino, P. (2012). Gasifikasi arang limbah biomassa oleh karbon dioksida melalui termogravimetri—Pengaruh katalis. Fuel Science and Technology, 184, 64–77. https://doi.org/10.1016/j.fuel.2011.11.049

Veljkovic, V. B., Bankovic-Ilic, I. B., & Stamenkovic, O. S. (2015). Pemurnian biodiesel mentah yang diperoleh dengan transesterifikasi yang dikatalisis secara heterogen. Renewable and Sustainable Energy Reviews, 49, 500–516. https://doi.org/10.1016/j.rser.2015.04.142

Vivek, C. P., Rochak, P. V., Suresh, P. S., & Raghavendra Ravi Kiran, K. (2019). Comparison Study on Fuel Briquettes Made of Eco-Friendly Materials for Alternate Source of Energy. IOP Conference Series: Materials Science and Engineering, 577(012183), 1-8. https://doi.org/10.1088/1757- 899X/577/1/012183

Xu, G., Li, M., & Lu, P. (2019). Investigasi eksperimental pada sifat aliran biomassa yang berbeda dan bubuk biomassa torefied. Bioenergi Biomassa, 122, 63–75. https://doi.org/10.1016/j.biombioe.2019.02.001

Yu, S., Taman, J., Kim, M., Ryu, C., & Park, J. (2019). Characterization of biochar and by products from slow pyrolysis of hinoki cypress. Bioresource Technology Reports, 6, 217–222. https://doi.org/10.1016/j.biteb.2019.08.002

Zaimes, G. G., Soratana, K., Mengeras, C. L., Landis, A. E., & Khanna, V. (2015). Biofuel from fast pyrolysis of perennial grass: A life cycle assessment of energy consumption and greenhouse gas emissions. Environmental Science & Technology, 49(17), 10007 10018. https://doi.org/10.1021/acs.est.5b01703

Zhang, T., Cao, D., Feng, X., Zhu, J., Lu, X., Mu, L., & Qian, H. (2022). Machine learning prediksi karakteristik bio-oil secara kuantitatif berkaitan dengan komposisi biomassa dan kondisi pirolisis. Fuel, 312, 122812. https://doi.org/10.1016/j.fuel.2021.122812


Refbacks

  • There are currently no refbacks.