Mekanisme dan Aplikasi Pirolisis Biomassa Dalam Produksi Biochar, Bio-Oil dan Gas Pirolisis

Firda Rizki Rhomadoni, Siti Jamilatun, M Idris, Martomo Setyawan

Abstract


Peningkatan populasi dan aktivitas industri telah menyebabkan akumulasi limbah yang signifikan, menciptakan tantangan lingkungan yang mendesak. Pirolisis, sebagai proses termokimia yang menguraikan bahan organik pada suhu tinggi (300 °C hingga 800 °C) tanpa oksigen, menawarkan solusi berkelanjutan dengan mengolah limbah menjadi produk bernilai tinggi seperti biochar, bio-oil, dan gas pirolisis. Proses ini melibatkan beberapa tahap, termasuk persiapan bahan baku, pemanasan bertahap untuk menghindari dekomposisi yang tidak terkontrol, dan pemisahan produk akhir. Variasi jenis biomassa, seperti kayu, limbah pertanian, atau plastik, serta kondisi operasi seperti suhu, laju pemanasan, dan waktu tinggal, secara signifikan mempengaruhi komposisi dan kuantitas produk. Misalnya, suhu yang lebih tinggi cenderung meningkatkan produksi gas pirolisis, sementara suhu yang lebih rendah mendukung pembentukan biochar. Biochar memiliki manfaat sebagai penyerap karbon dan perbaikan tanah, sedangkan bio-oil dapat digunakan sebagai bahan bakar alternatif dan sumber senyawa kimia yang bernilai. Gas pirolisis, yang kaya akan hidrogen dan karbon monoksida, memiliki potensi untuk menghasilkan energi melalui pembakaran atau konversi lebih lanjut. Meskipun pirolisis menunjukkan potensi besar dalam pengelolaan limbah, tantangan seperti pembentukan kokas, optimasi pemisahan produk, dan pengurangan emisi sampingan memerlukan penelitian lebih lanjut. Penelitian yang berfokus pada peningkatan efisiensi, pemanfaatan hasil produk secara optimal, dan penerapan teknologi pirolisis pada skala industri dapat memberikan solusi praktis untuk mendukung keberlanjutan lingkungan serta mengatasi tantangan limbah global yang semakin meningkat.


Keywords


Biochar; Bio-oil; Gas pirolisis; Limbah; Pirolisis.

Full Text:

PDF

References


Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314. https://doi.org/10.1016/j.jenvman.2013.12.007

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

Aini, N. A., Jamilatun, S., & Pitoyo, J. (2022). Pirolisis Biomassa: Review. Agroindustrial Technology Journal, 6(1), 89. https://doi.org/10.21111/atj.v6i1.7559

Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167(May), 112715. https://doi.org/10.1016/j.rser.2022.112715

Amer, M. W., Aljariri Alhesan, J. S., Ibrahim, S., Qussay, G., Marshall, M., & Al-Ayed, O. S. (2021). Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy, 214, 118863. https://doi.org/10.1016/j.energy.2020.118863

Baudry, G., Macharis, C., & Vallée, T. (2018). Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy, 155(July), 1032–1046. https://doi.org/10.1016/j.energy.2018.05.038

Boscagli, C., Raffelt, K., & Grunwaldt, J. D. (2017). Reactivity of platform molecules in pyrolysis oil and in water during hydrotreatment over nickel and ruthenium catalysts. Biomass and Bioenergy, 106, 63–73. https://doi.org/10.1016/j.biombioe.2017.08.013

Capunitan, J. A., & Capareda, S. C. (2014). Hydrotreatment of corn stover bio-oil using noble metal catalysts. Fuel Processing Technology, 125, 190–199. https://doi.org/10.1016/j.fuproc.2014.03.029

Cheng, D., Wang, L., Shahbazi, A., Xiu, S., & Zhang, B. (2014). Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure. Energy Conversion and Management, 87, 378–384. https://doi.org/10.1016/j.enconman.2014.06.084

Duan, D., Feng, Z., Dong, X., Chen, X., Zhang, Y., Wan, K., Wang, Y., Wang, Q., Xiao, G., Liu, H., & Ruan, R. (2021). Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters. Energy, 232, 121090. https://doi.org/10.1016/j.energy.2021.121090

Elkhalifa, S., Mariyam, S., Mackey, H. R., Al-Ansari, T., McKay, G., & Parthasarathy, P. (2022). Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses. Energies, 15(17). https://doi.org/10.3390/en15176277

Faisal, M., Channa, A. S., Mat, R., & Ani, F. N. (2014). Microwave assisted pyrolysis of waste biomass resources for bio-oil production. Applied Mechanics and Materials, 554, 307–311. https://doi.org/10.4028/www.scientific.net/AMM.554.307

Febriyanti, F., Fadila, N., Susandy, A., Yazid Bindar, S., Irawan, A., Sanjaya, A. S., & Bindar, Y. (2019). Pemanfaatan Limbah Tandan Kosong Kelapa Sawit Menjadi Bio-Char, Bio-Oil Dan Gas Dengan Metode Pirolisis Utilization of Empty Fruit Bunches Waste Into Bio-Char, Bio-Oil and Gases With Pyrolysis Method. Jurnal Chemurgy, 03(2), 12–17.

Gonnella, G., Ischia, G., Fambri, L., & Fiori, L. (2022). Thermal Analysis and Kinetic Modeling of Pyrolysis and Oxidation of Hydrochars. Energies, 15(3). https://doi.org/10.3390/en15030950

Gouws, S. M., Carrier, M., Bunt, J. R., & Neomagus, H. W. J. P. (2022). Lumped chemical kinetic modelling of raw and torrefied biomass under pressurized pyrolysis. Energy, 253, 115199. https://doi.org/https://doi.org/10.1016/j.enconman.2021.115199

Homagain, K., Shahi, C., Luckai, N., & Sharma, M. (2014). Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review. Journal of Forestry Research, 25(4), 737–748. https://doi.org/10.1007/s11676-014-0522-6

Hu, M., Ye, Z., Zhang, Q., Xue, Q., Li, Z., Wang, J., & Pan, Z. (2022). Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass. Energy, 245, 123286. https://doi.org/https://doi.org/10.1016/j.energy.2022.123286

Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024

Idris, M., Setyawan, M., & Mufrodi, Z. (2024). Teknologi Insinerasi Sebagai Solusi Pengolahan Sampah Perkotaan dan Pemulihan Energi : A Review. Seminar Nasional Sains Dan Teknologi 2024, April. https://jurnal.umj.ac.id/index.php/semnastek/article/view/22490/10451

Idris, M., Setyawan, M., & Suharto, T. E. (2024). Effect of Flow Rate Ratio of Air and Waste Cooking Oil on Combustion Temperature and Furnace Efficiency. Eksergi, 22(1), 25-32.

Igliński, B., Kujawski, W., & Kiełkowska, U. (2023). Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies, 16(4). https://doi.org/10.3390/en16041829

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566

Jamilatun, S., Setyawan, M., Mufandi, I., & Budiman, A. (2019). Potensi Produk Cair (Oil Phase dan Water Phase) Pirolisis Mikroalga Sebagai Pengawet Makanan. CHEMICA: Jurnal Teknik Kimia, 6(2), 83. https://doi.org/10.26555/chemica.v6i2.14813

Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., & Lu, Q. (2020). Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. Renewable and Sustainable Energy Reviews, 134(July), 110305. https://doi.org/10.1016/j.rser.2020.110305

Kim, T. S., Oh, S., Kim, J. Y., Choi, I. G., & Choi, J. W. (2014). Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy, 68, 437–443. https://doi.org/10.1016/j.energy.2014.03.004

Köseoʇlu, E., & Akmil-Başar, C. (2015). Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Advanced Powder Technology, 26(3), 811–818. https://doi.org/10.1016/j.apt.2015.02.006

Kuan, W. H., Huang, Y. F., Chang, C. C., & Lo, S. L. (2013). Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresource Technology, 146, 324–329. https://doi.org/10.1016/j.biortech.2013.07.079

Kumar, R. S., Sivakumar, S., Joshuva, A., Deenadayalan, G., & Vishnuvardhan, R. (2021). Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics. Energy, 217, 119327. https://doi.org/10.1016/j.energy.2020.119327

Li, Y., Xing, B., Ding, Y., Han, X., & Wang, S. (2020). A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, 312(May), 123614. https://doi.org/10.1016/j.biortech.2020.123614

Liu, H., Ma, X., Li, L., Hu, Z. F., Guo, P., & Jiang, Y. (2014). The catalytic pyrolysis of food waste by microwave heating. Bioresource Technology, 166, 45–50. https://doi.org/10.1016/j.biortech.2014.05.020

Liu, R., Liu, G., Yousaf, B., Niu, Z., & Abbas, Q. (2022). Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix. Energy, 153, 111761. https://doi.org/https://doi.org/10.1016/j.rser.2021.111761

Liu, Y., Li, K., Guo, J., & Zhenming Xu. (2018). Impact of the operating conditions on the derived products and the reaction mechanism in vacuum pyrolysis treatment of the organic material in waste integrated circuits. Journal of Cleaner Production, 197(Part 1), 1488–1497. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.236

Mariyam, S., Shahbaz, M., Al-Ansari, T., & , Hamish. R Mackey a, G. M. (2022). A critical review on co-gasification and co-pyrolysis for gas production. Energy, 161, 112349. https://doi.org/https://doi.org/10.1016/j.rser.2022.112349

Mierzwa-Hersztek, M., Gondek, K., Jewiarz, M., & Dziedzic, K. (2019). Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. Journal of Material Cycles and Waste Management, 21(4), 786–800. https://doi.org/10.1007/s10163-019-00832-6

Mushtaq, F., Abdullah, T. A. T., Mat, R., & Ani, F. N. (2015). Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresource Technology, 190, 442–450. https://doi.org/10.1016/j.biortech.2015.02.055

Naimah, S., & Aidha, N. N. (2017). Karakteristik Gas Hasil Proses Pirolisis Limbah Plastik Polietilena (PE) dengan Menggunakan Katalis Residue Catalytic Cracking (RCC). Jurnal Kimia Dan Kemasan, 39(1), 31. https://doi.org/10.24817/jkk.v39i1.2750

Nisar, J., Ahmad, A., Ali, G., Rehman, N. U., Shah, A., & Shah, I. (2022). Enhanced Bio-Oil Yield from Thermal Decomposition of Peanut Shells Using Termite Hill as the Catalyst. Energies, 15(5). https://doi.org/10.3390/en15051891

Pan, J., Jiang, J., & Xu, R. (2013). Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. Journal of Environmental Sciences (China), 25(10), 1957–1965. https://doi.org/10.1016/S1001-0742(12)60305-2

Phuakpunk, K., Chalermsinsuwan, B., & Assabumrungrat, S. (2022). Pyrolysis kinetic parameters investigation of single and tri-component biomass: Models fitting via comparative model-free methods. Energy, 182, 494–507. https://doi.org/https://doi.org/10.1016/j.renene.2021.10.011

Piechota, G., & Igliński, B. (2021). Biomethane in Poland—Current Status, Potential, Perspective and Development. Energies, 14(6), 1–32. https://doi.org/10.3390/en14061517

Rangel, M. do C., Mayer, F. M., Carvalho, M. da S., Saboia, G., & de Andrade, A. M. (2023). Selecting Catalysts for Pyrolysis of Lignocellulosic Biomass. Biomass (Switzerland), 3(1), 31–63. https://doi.org/10.3390/biomass3010003

Rizal, W. A., Suryani, R., Wahono, S. K., Anwar, M., Prasetyo, D. J., Amdani, R. Z., Suwanto, A., & Februanata, N. (2020). Pirolisis Limbah Biomassa Serbuk Gergaji Kayu Campuran : Parameter Proses dan Analisis Produk Asap Cair. Jurnal Riset Teknologi Industri, 14(2), 353. https://doi.org/10.26578/jrti.v14i2.6606

Sayğili, H., & Güzel, F. (2016). High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: Process optimization, characterization and dyes adsorption. Journal of Cleaner Production, 113, 995–1004. https://doi.org/10.1016/j.jclepro.2015.12.055

Stančin, H., Mikulčić, H., Manić, N., Stojiljiković, D., Vujanović, M., Wang, X., & Duić, N. (2021). Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis. Energy, 237. https://doi.org/10.1016/j.energy.2021.121592

Tay, T., Ucar, S., & Karagöz, S. (2009). Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials, 165(1–3), 481–485. https://doi.org/10.1016/j.jhazmat.2008.10.011

Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., Chin, B. L. F., Khaerudini, D. S., Hameed, N., Guan, G., & Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resources Conversion, 4(June), 239–250. https://doi.org/10.1016/j.crcon.2021.10.002

Tian, Y., Zuo, W., Ren, Z., & Chen, D. (2011). Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology, 102(2), 2053–2061. https://doi.org/10.1016/j.biortech.2010.09.082

Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., & Ashrafur, S. M. (2018). An overview of recent developments in biomass pyrolysis technologies. Energies, 11(11). https://doi.org/10.3390/en11113115

Wang, Y., Zeng, Z., Tian, X., Dai, L., Jiang, L., Zhang, S., Wu, Q., Wen, P., Fu, G., Liu, Y., & Ruan, R. (2018). Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresource Technology, 269, 162–168. https://doi.org/10.1016/j.biortech.2018.08.067

Weerachanchai, P., Tangsathitkulchai, C., & Tangsathitkulchai, M. (2012). Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering, 29(2), 182–189. https://doi.org/10.1007/s11814-011-0161-y

Wildschut, J., Mahfud, F. H., Venderbosch, R. H., & Heeres, H. J. (2009). Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts Jelle. Ind. Eng. Chem. Res., 48, 10324–10334.

Wnetrzak, R., Leahy, J. J., Chojnacka, K. W., Saeid, A., Novotny, E., Jensen, L. S., & Kwapinski, W. (2014). Influence of pig manure biochar mineral content on Cr(III) sorption capacity. Journal of Chemical Technology and Biotechnology, 89(4), 569–578. https://doi.org/10.1002/jctb.4159

Yin, W., Venderbosch, R. H., He, S., Bykova, M. V., Khromova, S. A., Yakovlev, V. A., & Heeres, H. J. (2017). Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Conversion and Biorefinery, 7(3), 361–376. https://doi.org/10.1007/s13399-017-0267-5

Zheng, J. lu, Zhu, X. feng, Guo, Q. xiang, & Zhu, Q. shi. (2006). Thermal conversion of rice husks and sawdust to liquid fuel. Waste Management, 26(12), 1430–1435. https://doi.org/10.1016/j.wasman.2005.10.011

Zihan, L., A, P. L., A, C. C., Wang, X., Song, J., A, S. F., & Pang, S. (2022). Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis. Energy, 250(123776). https://doi.org/https://doi.org/10.1016/j.energy.2022.123776

Zou, J., Hu, H., Xue, Y., Li, C., Li, Y., Yellezuome, D., He, F., Zhang, X., Rahman, M. M., & Cai, J. (2022). Exploring kinetic mechanisms of biomass pyrolysis using generalized logistic mixture model. Energy, 258, 115522. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115522


Refbacks

  • There are currently no refbacks.