Pengelolaan Dan Pemanfaatan Biomassa Yang Terkontaminasi Pasca-Fitoremediasi: A Review

Lukman Hakim, Aster Rahayu, Siti Jamilatun

Abstract


Fitoremediasi hadir sebagai teknologi yang menjanjikan untuk mengurangi permasalahan pencemaran air dan tanah. Fitoremediasi terbukti menjadi teknologi yang ekonomis dan ramah lingkungan. Namun, teknik fitoremediasi menyumbangkan sejumlah besar bahan yang terkontaminasi ke lingkungan dan menciptakan masalah polusi lebih lanjut. Biomassa yang dihasilkan pasca-fitoremediasi cukup banyak dan akan menjadi limbah biologis yang tergolong kedalam limbah berbahaya dan beracun. Oleh karena itu harus dikelola dan dilakukan penanganan yang tepat. Review paper ini akan mengulas metode metode pemanfaatan biomassa pasca-fitoremediasi. Penelitian yang telah dilakukan mengenai konversi biomassa menjadi bioenergi dan kompos dinilai cukup efektif dan efisien. Selain itu metode ini juga akan meningkatkan nilai ekonomis biomassa tanaman pasca fitoremediasi. Kemudian metode pemadatan dinilai memang lebih ekonomis namun menghasilkan residu kontaminan yang harus dilakukan pengolahan kembali. Sintesis nanomaterial dari biomassa yang terkontaminasi juga dapat menjadi alternatif namun metode ini sangat rumit dan cukup mahal. Perlu dilakukan penelitian lebih lanjut dan juga life cycle assessment untuk dapat memilih teknologi yang tepat dan efisien dalam pengelolaan biomassa serta peninjauan efek yang dihasilkan pasca-fitoremediasi yang bertujuan untuk mengimplementasikan teknologi fitoremediasi yang ramah lingkungan dan berkelanjutan.


Keywords


Biomassa; Fitoremediasi; Keberlanjutan; Pasca-Fitoremediasi.

Full Text:

PDF

References


Abubakar, H., Hammari, A. M., Adamu, U., & Abubakar, A. (2020). Biodiesel Production Using Helianthus Annuus (Sunflower) Seed Oil By Trans-Esterification Method. In Bstr (Vol. 8, Issue 2). Https://Journal.Hibiscuspublisher.Com/Index.Php/Bstr

Ahmad, R., Tehsin, Z., Malik, S. T., Asad, S. A., Shahzad, M., Bilal, M., Shah, M. M., & Khan, S. A. (2016). Phytoremediation Potential Of Hemp (Cannabis Sativa L.): Identification And Characterization Of Heavy Metals Responsive Genes. Clean - Soil, Air, Water, 44(2), 195–201. Https://Doi.Org/10.1002/Clen.201500117

Ahmed, S., Annu, Chaudhry, S. A., & Ikram, S. (2017). A Review On Biogenic Synthesis Of Zno Nanoparticles Using Plant Extracts And Microbes: A Prospect Towards Green Chemistry. In Journal Of Photochemistry And Photobiology B: Biology (Vol. 166, Pp. 272–284). Elsevier B.V. Https://Doi.Org/10.1016/J.Jphotobiol.2016.12.011

Al-Arfaj A, Abdel-Megeed A, Ali Hm, & Al-Shahrani O. (2013). Phyto-Microbial Degradation Of Glyphosate In Riyadh Area. In Journal Of Pure And Applied Microbiology (Vol. 7, Issue 2).

Alsafran, M., Usman, K., Ahmed, B., Rizwan, M., Saleem, M. H., & Al Jabri, H. (2022). Understanding The Phytoremediation Mechanisms Of Potentially Toxic Elements: A Proteomic Overview Of Recent Advances. In Frontiers In Plant Science (Vol. 13). Frontiers Media S.A. Https://Doi.Org/10.3389/Fpls.2022.881242

Asante-Badu, B., Kgorutla, L. E., Li, S. S., Danso, P. O., Xue, Z., & Qiang, G. (2020). Phytoremediation Of Organic And Inorganic Compounds In A Natural And An Agricultural Environment: A Review. Applied Ecology And Environmental Research, 18(5), 6875–6904. Https://Doi.Org/10.15666/Aeer/1805_68756904

Azami, V., & Yari, M. (2017). Comparison Between Conventional Design And Cathode Gas Recirculation Design Of A Direct-Syngas Solid Oxide Fuel Cell– Gas Turbine Hybrid Systems Part I: Design Performance. International Journal Of Renewable Energy Development, 6(2), 127–136. Https://Doi.Org/10.14710/Ijred.6.2.127-136

Basu, P. (2018). Chapter 12 - Production Of Synthetic Fuels And Chemicals From Biomass. In P. Basu (Ed.), Biomass Gasification, Pyrolysis And Torrefaction (Third Edition) (Pp. 415–443). Academic Press. Https://Doi.Org/Https://Doi.Org/10.1016/B978-0-12-812992-0.00012-1

Cao, Z., Wang, S., Wang, T., Chang, Z., Shen, Z., & Chen, Y. (2015). Using Contaminated Plants Involved In Phytoremediation For Anaerobic Digestion. International Journal Of Phytoremediation, 17(3), 201–207. Https://Doi.Org/10.1080/15226514.2013.876967

Cui, X., Shen, Y., Yang, Q., Kawi, S., He, Z., Yang, X., & Wang, C. H. (2018). Simultaneous Syngas And Biochar Production During Heavy Metal Separation From Cd/Zn Hyperaccumulator (Sedum Alfredii) By Gasification. Chemical Engineering Journal, 347, 543–551. Https://Doi.Org/10.1016/J.Cej.2018.04.133

Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y., Yan, B., Li, T., He, Z., Yang, X., & Chen, G. (2021). A Review On The Thermal Treatment Of Heavy Metal Hyperaccumulator: Fates Of Heavy Metals And Generation Of Products. In Journal Of Hazardous Materials (Vol. 405). Elsevier B.V. Https://Doi.Org/10.1016/J.Jhazmat.2020.123832

Darajeh, N., Idris, A., Truong, P., Abdul Aziz, A., Abu Bakar, R., & Che Man, H. (2014). Phytoremediation Potential Of Vetiver System Technology For Improving The Quality Of Palm Oil Mill Effluent. Advances In Materials Science And Engineering, 2014. Https://Doi.Org/10.1155/2014/683579

Debalina, B., Reddy, R. B., & Vinu, R. (2017). Production Of Carbon Nanostructures In Biochar, Bio-Oil And Gases From Bagasse Via Microwave Assisted Pyrolysis Using Fe And Co As Susceptors. Journal Of Analytical And Applied Pyrolysis, 124, 310–318. Https://Doi.Org/10.1016/J.Jaap.2017.01.018

Dinh, N., Van Der Ent, A., Mulligan, D. R., & Nguyen, A. V. (2018). Zinc And Lead Accumulation Characteristics And In Vivo Distribution Of Zn2+ In The Hyperaccumulator Noccaea Caerulescens Elucidated With Fluorescent Probes And Laser Confocal Microscopy. Environmental And Experimental Botany, 147, 1–12. Https://Doi.Org/10.1016/J.Envexpbot.2017.10.008

Fu, Y., You, S., & Luo, X. (2021a). A Review On The Status And Development Of Hyperaccumulator Harvests Treatment Technology. Iop Conference Series: Earth And Environmental Science, 634(1). Https://Doi.Org/10.1088/1755-1315/634/1/012113

Gebrehiwot, H., & Zelelew, D. (2022). Ricinus Communis Seed Oils As A Source Of Biodiesel; A Renewable Form Of Future Energy. Journal Of The Turkish Chemical Society, Section A: Chemistry, 9(2), 339–354. Https://Doi.Org/10.18596/Jotcsa.1019969

Geletukha, G., Drahniev, S., Zheliezna, T., & Bashtovyi, A. (2020). Prospects Of Sunflower Residues Use For Energy. Www.Uabio.Org

Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wei, J., Huang, C., Xu, P., Wan, J., & Zhang, C. (2018). Pyrolysis And Reutilization Of Plant Residues After Phytoremediation Of Heavy Metals Contaminated Sediments: For Heavy Metals Stabilization And Dye Adsorption. Bioresource Technology, 253, 64–71. Https://Doi.Org/10.1016/J.Biortech.2018.01.018

Hakim, L., Rahayu, A., & Jamilatun, S. (2024). Potensi Teknologi Fitoremediasi Sebagai Polishing Treatment Palm Oil Mill Effluent : A Review. Seminar Nasional Sains Dan Teknologi 2024.

He, J., Mao, M., Li, X., & Chua, C. K. (2021). Bioprinting Of 3d Functional Tissue Constructs. International Journal Of Bioprinting, 7(3), 1–2. Https://Doi.Org/10.18063/Ijb.V7i3.395

Heidari, S., Fotouhi Ghazvini, R., Zavareh, M., & Kafi, M. (2018). Physiological Responses And Phytoremediation Ability Of Eastern Coneflower (Echinacea Purpurea) For Crude Oil Contaminated Soil. In Caspian J. Environ. Sci (Vol. 16, Issue 2).

Ighalo, J. O., Iwuchukwu, F. U., Eyankware, O. E., Iwuozor, K. O., Olotu, K., Bright, O. C., & Igwegbe, C. A. (2022). Flash Pyrolysis Of Biomass: A Review Of Recent Advances. Clean Technologies And Environmental Policy, 24(8), 2349–2363. Https://Doi.Org/10.1007/S10098-022-02339-5

Jeds, & Honora, P. (2021). Analysis Of Bioenergy From Corncob Waste To Increase People’s Economic Condition In Tantom Angkola Subdristrict Tapanuli Selatan Regency. Journal Of Environmental And Development Studies, 2(2), 79–86. Https://Doi.Org/10.32734/Jeds.V2i2.6614

Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, Plant Selection And Enhancement By Natural And Synthetic Agents. In Environmental Advances (Vol. 8). Elsevier Ltd. Https://Doi.Org/10.1016/J.Envadv.2022.100203

Karaeva, J., Timofeeva, S., Islamova, S., Bulygina, K., Aliev, F., Panchenko, V., & Bolshev, V. (2023). Pyrolysis Of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar And Hydrocarbon Rich Bio-Oil Production. Agriculture (Switzerland), 13(2). Https://Doi.Org/10.3390/Agriculture13020260

Karp, A., & Shield, I. (2008). Bioenergy From Plants And The Sustainable Yield Challenge. In New Phytologist (Vol. 179, Issue 1, Pp. 15–32). Https://Doi.Org/10.1111/J.1469-8137.2008.02432.X

Knauert, S., Singer, H., Hollender, J., & Knauer, K. (2010). Phytotoxicity Of Atrazine, Isoproturon, And Diuron To Submersed Macrophytes In Outdoor Mesocosms. Environmental Pollution, 158(1), 167–174. Https://Doi.Org/10.1016/J.Envpol.2009.07.023

Koptsik, G. N. (2014). Problems And Prospects Concerning The Phytoremediation Of Heavy Metal Polluted Soils: A Review. In Eurasian Soil Science (Vol. 47, Issue 9, Pp. 923–939). Maik Nauka-Interperiodica Publishing. Https://Doi.Org/10.1134/S1064229314090075

Liu, Z., Chen, B., Wang, L. Ao, Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A Review On Phytoremediation Of Mercury Contaminated Soils. In Journal Of Hazardous Materials (Vol. 400). Elsevier B.V. Https://Doi.Org/10.1016/J.Jhazmat.2020.123138

Liu, Z., & Tran, K. Q. (2021a). A Review On Disposal And Utilization Of Phytoremediation Plants Containing Heavy Metals. In Ecotoxicology And Environmental Safety (Vol. 226). Academic Press. Https://Doi.Org/10.1016/J.Ecoenv.2021.112821

Mamat, N. Z., Abdullah, S. R. S., Hasan, H. A., Ismail, N. ‘izzati, & Sharuddin, S. S. N. (2022). Polishing Of Treated Palm Oil Mill Effluent Using Azolla Pinnata. Journal Of Biochemistry, Microbiology And Biotechnology, 10(Sp2), 40–45. Https://Doi.Org/10.54987/Jobimb.V10isp2.727

Matheson, S., Fleck, R., Irga, P. J., & Torpy, F. R. (2023). Phytoremediation For The Indoor Environment: A State-Of-The-Art Review. In Reviews In Environmental Science And Biotechnology (Vol. 22, Issue 1, Pp. 249–280). Springer Science And Business Media B.V. Https://Doi.Org/10.1007/S11157-023-09644-5

Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I., & Radomski, M. W. (2007). Nanoparticles: Pharmacological And Toxicological Significance. In British Journal Of Pharmacology (Vol. 150, Issue 5, Pp. 552–558). Https://Doi.Org/10.1038/Sj.Bjp.0707130

Mitton, F. M., Miglioranza, K. S. B., Gonzalez, M., Shimabukuro, V. M., & Monserrat, J. M. (2014). Assessment Of Tolerance And Efficiency Of Crop Species In The Phytoremediation Of Ddt Polluted Soils. Ecological Engineering, 71, 501–508. Https://Doi.Org/10.1016/J.Ecoleng.2014.07.069

Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. Jr. (2014). Organic And Inorganic Contaminants Removal From Water With Biochar, A Renewable, Low Cost And Sustainable Adsorbent–A Critical Review. Bioresource Technology, 160, 191–202. Https://Api.Semanticscholar.Org/Corpusid:23729337

Mohanty, M. (2016). Post-Harvest Management Of Phytoremediation Technology. Journal Of Environmental & Analytical Toxicology, 6(5). Https://Doi.Org/10.4172/2161-0525.1000398

Mukherjee, I., & Kumar, A. (2012). Phytoextraction Of Endosulfan A Remediation Technique. In Bulletin Of Environmental Contamination And Toxicology (Vol. 88, Issue 2, Pp. 251–254). Https://Doi.Org/10.1007/S00128-011-0454-1

Osman, N. A., Ujang, F. A., Roslan, A. M., Ibrahim, M. F., & Hassan, M. A. (2020). The Effect Of Palm Oil Mill Effluent Final Discharge On The Characteristics Of Pennisetum Purpureum. Scientific Reports, 10(1). Https://Doi.Org/10.1038/S41598-020-62815-0

Pal, P. K., Mahajan, M., Thakur, B. K., Kapoor, P., & Shivani. (2023). Achievement Of Higher Biomass, Yield And Quality Of Essential Oil Of Tagetes Minuta L. Through Optimizing The Sowing Method And Seeding Rate. Frontiers In Plant Science, 14. Https://Doi.Org/10.3389/Fpls.2023.1133370

Patil, S. P., Chaudhari, R. Y., & Nemade, M. S. (2022). Azadirachta Indica Leaves Mediated Green Synthesis Of Metal Oxide Nanoparticles: A Review. In Talanta Open (Vol. 5). Elsevier B.V. Https://Doi.Org/10.1016/J.Talo.2022.100083

Pei, N., Hao, Z., Wang, S., Pan, B., Fang, A., Kang, J., Li, D., He, J., & Wang, L. (2021). 3d Printing Of Layered Gradient Pore Structure Of Brain-Like Tissue. International Journal Of Bioprinting, 7(3), 71–85. Https://Doi.Org/10.18063/Ijb.V7i3.359

Peipei, S., Wudi, Z., Fang, Y., Xingling, Z., Jing, L., Yubao, C., & Shiqing, L. (2014). Biogas Production Potential Of Transgenic Vetiveria Zizanioides In Mesophilic Batch Anaerobic Digestion. Scientific Research And Essays, 9(9), 293–296. Https://Doi.Org/10.5897/Sre2014.5904

Priyadarshini, B. M., Dikshit, V., & Zhang, Y. (2020). 3d-Printed Bioreactors For In Vitro Modeling And Analysis. In International Journal Of Bioprinting (Vol. 6, Issue 4). Whioce Publishing Pte. Ltd. Https://Doi.Org/10.18063/Ijb.V6i4.267

Raskin, Ilya., & Ensley, B. D. . (2000). Phytoremediation Of Toxic Metals : Using Plants To Clean Up The Environment. J. Wiley.

Restiawaty, E., & Dewi, A. (2017). Comparison Of Pretreatment Methods On Vetiver Leaves For Efficient Processes Of Simultaneous Saccharification And Fermentation By Neurospora Sp. Journal Of Physics: Conference Series, 877(1). Https://Doi.Org/10.1088/1742-6596/877/1/012048

Rissato, S. R., Galhiane, M. S., Fernandes, J. R., Gerenutti, M., Gomes, H. M., Ribeiro, R., & Almeida, M. V. De. (2015). Evaluation Of Ricinus Communis L. For The Phytoremediation Of Polluted Soil With Organochlorine Pesticides. Biomed Research International, 2015. Https://Doi.Org/10.1155/2015/549863

Romeh, A. A. (2015). Evaluation Of The Phytoremediation Potential Of Three Plant Species For Azoxystrobin-Contaminated Soil. International Journal Of Environmental Science And Technology, 12(11), 3509–3518. Https://Doi.Org/10.1007/S13762-015-0772-7

Salazar, M. J., & Pignata, M. L. (2014). Lead Accumulation In Plants Grown In Polluted Soils. Screening Of Native Species For Phytoremediation. Journal Of Geochemical Exploration, 137, 29–36. Https://Doi.Org/10.1016/J.Gexplo.2013.11.003

Salihaj, M., Bani, A., Shahu, E., Benizri, E., & Echevarria, G. (2018). Metal Accumulation By The Ultramafic Flora Of Kosovo. Ecological Research, 33(4), 687–703. Https://Doi.Org/10.1007/S11284-018-1635-8

Samolada, M. C., & Zabaniotou, A. A. (2014). Comparative Assessment Of Municipal Sewage Sludge Incineration, Gasification And Pyrolysis For A Sustainable Sludge-To-Energy Management In Greece. Waste Management, 34(2), 411–420. Https://Doi.Org/10.1016/J.Wasman.2013.11.003

Schulz, V. S., Munz, S., Stolzenburg, K., Hartung, J., Weisenburger, S., Mastel, K., Möller, K., Claupein, W., & Graeff-Hönninger, S. (2018). Biomass And Biogas Yield Of Maize (Zea Mays L.) Grown Under Artificial Shading. Agriculture (Switzerland), 8(11). Https://Doi.Org/10.3390/Agriculture8110178

Singh, J., & Kalamdhad, A. S. (2016). Effect Of Lime On Speciation Of Heavy Metals During Composting Of Water Hyacinth. Frontiers Of Environmental Science And Engineering, 10(1), 93–102. Https://Doi.Org/10.1007/S11783-014-0704-7

Situmorang, Y. A., Zhao, Z., Yoshida, A., Abudula, A., & Guan, G. (2020). Small-Scale Biomass Gasification Systems For Power Generation (<200 kw Class): A Review. In Renewable And Sustainable Energy Reviews (Vol. 117). Elsevier Ltd. Https://Doi.Org/10.1016/J.Rser.2019.109486

Song, U., & Park, H. (2017). Importance Of Biomass Management Acts And Policies After Phytoremediation. Journal Of Ecology And Environment, 41(1). Https://Doi.Org/10.1186/S41610-017-0033-4

Walia, S., & Kumar, R. (2021). Wild Marigold (Tagetes Minuta L.) Biomass And Essential Oil Composition Modulated By Weed Management Techniques. Industrial Crops And Products, 161. Https://Doi.Org/10.1016/J.Indcrop.2020.113183

Wang, D., Liu, H., Ma, Y., Qu, J., Guan, J., Lu, N., Lu, Y., & Yuan, X. (2016). Recycling Of Hyper-Accumulator: Synthesis Of Zno Nanoparticles And Photocatalytic Degradation For Dichlorophenol. Journal Of Alloys And Compounds, 680, 500–505. Https://Doi.Org/10.1016/J.Jallcom.2016.04.100

Wang, G., Dai, Y., Yang, H., Xiong, Q., Wang, K., Zhou, J., Li, Y., & Wang, S. (2020). A Review Of Recent Advances In Biomass Pyrolysis. In Energy And Fuels (Vol. 34, Issue 12, Pp. 15557–15578). American Chemical Society. Https://Doi.Org/10.1021/Acs.Energyfuels.0c03107

Wang, K., Liu, Y., Song, Z., Wang, D., & Qiu, W. (2019). Chelator Complexes Enhanced Amaranthus Hypochondriacus L. Phytoremediation Efficiency In Cd-Contaminated Soils. Chemosphere, 237. Https://Doi.Org/10.1016/J.Chemosphere.2019.124480

Wei, Y., Zhao, Y., Zhao, X., Gao, X., Zheng, Y., Zuo, H., & Wei, Z. (2020). Roles Of Different Humin And Heavy-Metal Resistant Bacteria From Composting On Heavy Metal Removal. Bioresource Technology, 296. Https://Doi.Org/10.1016/J.Biortech.2019.122375

Wen, X. B., Zhang, X. H., & Liu, J. (2018). A Comparative Study On The Disposal Of Harvested Products Of Cr Hyper-Accumulator Leersia Hexandra Swartz By Incineration And Pyrolysis. J. Industrial Safety And Environmental Protection, 44(03), 73–77.

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A Promising Approach For Revegetation Of Heavy Metal-Polluted Land. In Frontiers In Plant Science (Vol. 11). Frontiers Media S.A. Https://Doi.Org/10.3389/Fpls.2020.00359

Yang, K., Zhu, L., Zhao, Y., Wei, Z., Chen, X., Yao, C., Meng, Q., & Zhao, R. (2019). A Novel Method For Removing Heavy Metals From Composting System: The Combination Of Functional Bacteria And Adsorbent Materials. Bioresource Technology, 293. Https://Doi.Org/10.1016/J.Biortech.2019.122095

Zeng, K., Li, R., Minh, D. P., Weiss-Hortala, E., Nzihou, A., He, X., & Flamant, G. (2019). Solar Pyrolysis Of Heavy Metal Contaminated Biomass For Gas Fuel Production. Energy, 187. Https://Doi.Org/10.1016/J.Energy.2019.116016

Zhang, B., Zhang, J., Zhong, Z., Wang, W., & Zhu, M. (2019). Syngas Production And Trace Element Emissions From Microwave-Assisted Chemical Looping Gasification Of Heavy Metal Hyperaccumulators. Science Of The Total Environment, 659, 612–620. Https://Doi.Org/10.1016/J.Scitotenv.2018.12.176

Zulfahmi, I., Kandi, R. N., Huslina, F., Rahmawati, L., Muliari, M., Sumon, K. A., & Rahman, M. M. (2021a). Phytoremediation Of Palm Oil Mill Effluent (Pome) Using Water Spinach (Ipomoea Aquatica Forsk). Environmental Technology And Innovation, 21. Https://Doi.Org/10.1016/J.Eti.2020.101260


Refbacks

  • There are currently no refbacks.