Review: Teknologi Surfaktan Non-Sulfat pada Kosmetik: Inovasi Surfaktan yang Aman untuk Kulit dan Lingkungan

Muhammad Arif Lukman Hakim, Adi Permadi, Nurani Sofiana

Abstract


Surfaktan merupakan bahan kimia yang digunakan dalam produk kosmetik untuk mengangkat kotoran, lemak dan minyak dengan cara menurunkan tegangan permukaan. Setiap produk cleansing pada kosmetik pasti membutuhkan surfaktan, namun masih banyak produk yang menggunakan surfaktan yang memiliki ion sulfat dalam strukturnya. Hal ini akan berakibat pada rusaknya skin barrier pada kulit dan menyebabkan beberapa permasalahan kulit seperti iritasi, sensitasi, atopik dermatitis dan sebagainya. Surfaktan yang memiliki ion sulfat juga sulit untuk didegradasi secara alamiah sehingga akan menyebabkan terganggunya siklus hidrologi di perairan. Oleh karena banyaknya masalah yang ditimbulkan oleh ion sulfat pada surfaktan maka dikembangkan suatu surfaktan yang tidak memiliki ion sulfat dan biasa disebut sebagai surfaktan non sulfat. Surfaktan non sulfat biasanya termasuk dalam golongan asam amino surfaktan, glucose surfaktan dan lipid surfaktan. Terdapat beberapa kelebihan surfaktan non sulfat jika dibandingkan dengan surfaktan yang memiliki ion sulfat yaitu memiliki CMC (critical micelle concentration) dan tegangan permukaan yang lebih kecil jika dibandingkan dengan surfaktan yang memiliki ion sulfat, hal ini menyebabkan daya angkat lemak dan kotoran surfaktan non sulfat lebih baik jika dibandingkan dengan surfaktan yang memiliki ion sulfat. Surfaktan non sulfat juga memiliki daya biodegradability yang jauh lebih baik jika dibandingkan dengan surfaktan yang memiliki ion sulfat hal ini menyebabkan surfaktan non sulfat lebih mudah untuk terurai dengan sendirinya di alam dan tidak menimbulkan pencemaran air dan tidak mengganggu siklus hidrologi air. Surfaktan non sulfat juga lebih ringan dan aman jika dibandingkan dengan surfaktan yang memiliki ion sulfat sehingga mengurangi resiko terjadinya permasalahan kulit saat penggunaan seperti iritasi, atopik dermatitis, dan sensitasi. Ketiga faktor tersebut menjadi alasan utama bahwa surfaktan non sulfat memiliki sifat yang lebih baik dan dapat menggantikan surfaktan yang memiliki ion sulfat.

Keywords


Biodegradability; Critical micelle concentration; Surfaktan non sulfat; Tegangan permukaan.

Full Text:

PDF

References


Amran, A. (2008). Pengaruh Garam-garam Nitrat Terhadap Konsentrasi Miselisasi Kritis (CMC, Critical Micellization Concentration) Saponin. Journal of Sainstek, XI(1), 69–73.

Ananthapadmanabhan, K. P., Moore, D. J., Subramanyan, K., Misra, M., & Meyer, F. (2004). Cleansing Without Compromise: The Impact of Cleansers On The Skin Barrier and The Technology Of Mild Cleansing. Dermatologic Therapy, 17(s1), 16–25. https://doi.org/10.1111/j.1396-0296.2004.04S1002.x

Arora, J., Ranjan, A., Chauhan, A., Biswas, R., Rajput, V. D., Sushkova, S., Mandzhieva, S., Minkina, T., & Jindal, T. (2022). Surfactant Pollution, An Emerging Threat to Ecosystem: Approaches for Effective Bacterial Degradation. Journal of Applied Microbiology, 133(3), 1229–1244. https://doi.org/10.1111/jam.15631

Barel, A. O., Paye, M., & Maibach, H. I. (Eds.). (2009). Handbook of Cosmetic Science and Technology (3rd ed). Informa Healthcare.

Bordes, R., & Holmberg, K. (2015). Amino Acid-Based Surfactants – Do They Deserve More Attention? Advances in Colloid and Interface Science, 222, 79–91. https://doi.org/10.1016/j.cis.2014.10.013

Budiawan, Fatisa, Y., & Khairani, N. (2010). Optimasi Biodegradabilitasdan Uji Toksisitas Hasil degradasi Surfaktan Linear Alkil Benzena Sulfonat (LAS) Sebagai Bahan Deterjen Pembersih. MAKARA of Science Series, 13(2). https://doi.org/10.7454/mss.v13i2.410

Burnett, C. L., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2017). Amended Safety Assessment of Isethionate Salts as Used in Cosmetics. International Journal of Toxicology, 36(1_suppl), 5S-16S. https://doi.org/10.1177/1091581816685552

Cárdenas, H., Kamrul-Bahrin, M. A. H., Seddon, D., Othman, J., Cabral, J. T., Mejía, A., Shahruddin, S., Matar, O. K., & Müller, E. A. (2024). Determining Interfacial Tension and Critical Micelle Concentrations of Surfactants From Atomistic Molecular Simulations. Journal of Colloid and Interface Science, 674, 1071–1082. https://doi.org/10.1016/j.jcis.2024.07.002

Cheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and Performance Pptimisation of Detergent Product Containing Binary Mixture of Anionic-Nonionic Surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861

Cheng, Z., Wei, Y., Zhang, Q., Zhang, J., Lu, T., & Pei, Y. (2018). Enhancement of Surfactant Biodegradation With an Anaerobic Membrane Bioreactor by Introducing Microaeration. Chemosphere, 208, 343–351. https://doi.org/10.1016/j.chemosphere.2018.06.001

Chowdhury, S., Rakshit, A., Acharjee, A., & Saha, B. (2021). Biodegradability and Biocompatibility: Advancements in Synthetic Surfactants. Journal of Molecular Liquids, 324, 115105. https://doi.org/10.1016/j.molliq.2020.115105

Damien, F., & Boncheva, M. (2010). The Extent of Orthorhombic Lipid Phases in the Stratum Corneum Determines the Barrier Efficiency of Human Skin In Vivo. Journal of Investigative Dermatology, 130(2), 611–614. https://doi.org/10.1038/jid.2009.272

Effendy, I., & Maibach, H. I. (1995). Surfactants and experimental Irritant Contact Dermatitis. Journal of Contact Dermatitis, 332, 217–225.

Fedeila, M., Hachaïchi-Sadouk, Z., Bautista, L. F., Simarro, R., & Nateche, F. (2018). Biodegradation of Anionic Surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens Strains Isolated from Industrial Wastewater. Ecotoxicology and Environmental Safety, 163, 629–635. https://doi.org/10.1016/j.ecoenv.2018.07.123

Fiume, M. M., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2013). Safety Assessment of Decyl Glucoside and Other Alkyl Glucosides as Used in Cosmetics. International Journal of Toxicology, 32(5_suppl), 22S-48S. https://doi.org/10.1177/1091581813497764

Foley, P., Kermanshahi Pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and Synthesis of Renewable Surfactants. Chem. Soc. Rev., 41(4), 1499–1518. https://doi.org/10.1039/C1CS15217C

Gao, Y., Yang, X., Bai, L., & Zhang, J. (2014). Preparation and Physiochemical Properties of Disodium Lauryl Glucoside Sulfosuccinate. Journal of Surfactants and Detergents, 17(4), 603–608. https://doi.org/10.1007/s11743-013-1561-2

Garg, V., Brod, B., & Gaspari, A. A. (2021). Patch Testing: Uses, Systems, Risks/Benefits, and Its Role in Managing The Patient With Contact Dermatitis. Clinics in Dermatology, 39(4), 580–590. https://doi.org/10.1016/j.clindermatol.2021.03.005

Hernáinz, F., & Caro, A. (2002). Variation of Surface Tension in Aqueous Solutions of Sodium Dodecyl Sulfate In The Flotation Bath. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(1), 19–24. https://doi.org/10.1016/S0927-7757(01)00575-1

James-Smith, M. A., Hellner, B., Annunziato, N., & Mitragotri, S. (2011). Effect of Surfactant Mixtures on Skin Structure and Barrier Properties. Annals of Biomedical Engineering, 39(4), 1215–1223. https://doi.org/10.1007/s10439-010-0190-4

Jeraal, M. I., Roberts, K. J., McRobbie, I., & Harbottle, D. (2018). A Process Focused Synthesis, Crystallization and Physicochemical Characterization of Sodium Lauroyl Isethionate. ACS Sustainable Chemistry and Engineering, 6(2), 2667–2675. https://doi.org/10.1021/acssuschemeng.7b04237

Johnson, W., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2015). Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics. International Journal of Toxicology, 34(2_suppl), 70S-83S. https://doi.org/10.1177/1091581815594755

Jose, B.-M., Raquel, B., Adriana, A., Teresa, G., & Deisi, A.-V. (2024). Surfactin as an Ingridient in Cosmetic Industry: Benefits and Trends. International Journal of Cosmetic Science, 46(702), 702–716.

Khalfallah, A. (2024). Structure and Applications of Surfactants. In O. Owoseni (Ed.), Surfactants—Fundamental Concepts and Emerging Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.111401

Kumar, P., & Paulose, R. (2014). Patch Testing in Suspected Allergic Contact Dermatitis to Cosmetics. Dermatology Research and Practice, 2014, 1–5. https://doi.org/10.1155/2014/695387

Lanigan, R. S. (2001). Final Report on the Safety Assessment of Cocoyl Sarcosine, Lauroyl Sarcosine, Myristoyl Sarcosine, Oleoyl Sarcosine, Stearoyl Sarcosine, Sodium Cocoyl Sarcosinate, Sodium Lauroyl Sarcosinate, Sodium Myristoyl Sarcosinate, Ammonium Cocoyl Sarcosinate, and Ammonium Lauroyl Sarcosinate. International Journal of Toxicology, 20(1), 1–14.

Leoty-Okombi, S., Gillaizeau, F., Leuillet, S., Douillard, B., Le Fresne-Languille, S., Carton, T., De Martino, A., Moussou, P., Bonnaud-Rosaye, C., & André, V. (2021). Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota. Cosmetics, 8(1), 6. https://doi.org/10.3390/cosmetics8010006

Li, Z. (2020). Modern Mild Skin Cleansing. Journal of Cosmetics, Dermatological Sciences and Applications, 10(02), 85–98. https://doi.org/10.4236/jcdsa.2020.102009

Liebeer, Inc, M. A. (1983). 7 Final Report on the Safety Assessment of Sodium Lauryl Sulfate and Ammonium Lauryl Sulfate. Journal of the American College of Toxicology, 2(7), 127–181. https://doi.org/10.3109/10915818309142005

Liebert, Inc., M. A. (1983). 1 Final Report on the Safety Assessment of Sodium Laureth Sulfate and Ammonium Laureth Sulfate. Journal of the American College of Toxicology, 2(5), 1–34. https://doi.org/10.3109/10915818309140713

Liebert, Inc., M. A. (1991). Final Report on the Safety Assessment of Cocamidopropyl Betaine. Journal of the American College of Toxicology, 10(1), 33–52. https://doi.org/10.3109/10915819109078621

Merkova, M., Zalesak, M., Ringlova, E., Julinova, M., & Ruzicka, J. (2018). Degradation of the Surfactant Cocamidopropyl Betaine by Two Bacterial Strains Isolated From Activated Sludge. International Biodeterioration & Biodegradation, 127, 236–240. https://doi.org/10.1016/j.ibiod.2017.12.006

Mustahil, N. A., Baharuddin, S. H., Abdullah, A. A., Reddy, A. V. B., Abdul Mutalib, M. I., & Moniruzzaman, M. (2019). Synthesis, Characterization, Ecotoxicity and Biodegradability Evaluations of Novel Biocompatible Surface Active Lauroyl Sarcosinate Ionic Liquids. Chemosphere, 229, 349–357. https://doi.org/10.1016/j.chemosphere.2019.05.026

Patel, M. (2003). Surfactants Based on Renewable Raw Materials: Carbon Dioxide Reduction Potential and Policies and Measures for the European Union. Journal of Industrial Ecology, 7(3–4), 47–62. https://doi.org/10.1162/108819803323059398

Paulo, A. M. S., Aydin, R., Dimitrov, M. R., Vreeling, H., Cavaleiro, A. J., García-Encina, P. A., Stams, A. J. M., & Plugge, C. M. (2017). Sodium Lauryl Ether Sulfate (SLES) Degradation by Nitrate-Reducing Bacteria. Applied Microbiology and Biotechnology, 101(12), 5163–5173. https://doi.org/10.1007/s00253-017-8212-x

Perinelli, D. R., Cespi, M., Lorusso, N., Palmieri, G. F., Bonacucina, G., & Blasi, P. (2020). Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir, 36(21), 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420

Rahat, M., Shuja, S., Kanwal, S. S., Zafar, N., & Talib, S. (2024). Formulating Sulfate Free Shampoo: Composition, Benefits and Therapeutical Use. African Journal of Biological Science, 6(13), 4468–4483.

Renung, R., & Mahreni. (2015). Biosurfaktan. Eksergi, XII(2), 12–22.

Ríos, F., Fernández-Arteaga, A., Lechuga, M., & Fernández-Serrano, M. (2017). Ecotoxicological Characterization of Polyoxyethylene Glycerol Ester Non-Ionic Surfactants and Their Mixtures with Anionic and Non-Ionic Surfactants. Environmental Science and Pollution Research, 24(11), 10121–10130. https://doi.org/10.1007/s11356-017-8662-9

Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and Interfacial Phenomena (4th ed). Wiley.

Salomon, G., & Giordano-Labadie, F. (2022). Surfactant Irritations and Allergies: European Journal of Dermatology, 32(6), 677–681. https://doi.org/10.1684/ejd.2022.4290

Schramm, L. L., Stasiuk, E. N., & Marangoni, D. G. (2003). 2 Surfactants and Their Applications. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 99, 3–48. https://doi.org/10.1039/B208499F

Sopiah, R. N. (2006). Laju degradasi Surfaktan Linear Alkil Benzena Sulfonate (LAS) Pada Limbah Deterjen Secara Anaerob Pada Reaktor Lekat Diam Bermedia Sarang Tawon. Jurnal teknik Lingkungan, 7(3), 243–250.

Tyagi, V. K. (2006). Sulfosuccinates as Mild Surfactants. Journal of Oleo Science, 55(9), 429–439. https://doi.org/10.5650/jos.55.429

Untari, E. K., & Robiyanto, R. (2018). Uji Fisikokimia dan Uji Iritasi Sabun Antiseptik Kulit Daun Aloe vera (L.) Burm. F. Jurnal Jamu Indonesia, 3(2), 55–61. https://doi.org/10.29244/jji.v3i2.54

Uzwatania, F., Hambali, E., & Suryani, A. (2017). Sintesis Surfaktan Alkil Poliglikosida (APG) Berbasis Dodekanol dan Heksadekanol dengan Reaktan Glukosa Cair 75%. Jurnal Teknologi Industri Pertanian, 27(1), 9–16. https://doi.org/10.24961/j.tek.ind.pert.2017.27.1.9

Wardana, D., Ramadhan, A., Fitri Amne, D. P., & Eddiyanto, E. (2019). Utilization of Glycerol from Used Oil as an Ester Glycerol Surfactant. Indonesian Journal of Chemical Science and Technology (IJCST), 2(2), 111. https://doi.org/10.24114/ijcst.v2i2.13999

Wei, H., Zhang, R., Lei, Z., & Dang, L. (2021). Synergistic Effect of Cocamidopropyl Betaine and Sodium Lauroyl Sarcosinate. Transactions of Tianjin University, 27(5), 366–376. https://doi.org/10.1007/s12209-020-00244-w

Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S. M., Petersen, R. J., Liu, H., & Goldhammer, T. (2021). Sulphate in Freshwater Ecosystems: A Review of Sources, Biogeochemical Cycles, Ecotoxicological Effects and Bioremediation. Earth-Science Reviews, 212, 103446. https://doi.org/10.1016/j.earscirev.2020.103446


Refbacks

  • There are currently no refbacks.