Teknologi Konversi Waste to Energy: Tinjauan Proses dan Perkembangan Terkini

M Idris, Martomo Setyawan, Erna Astuti, Totok Eka Suharto, Firman Firman

Abstract


Permintaan energi global yang meningkat pesat seiring pertumbuhan populasi telah menyebabkan peningkatan jumlah sampah yang dihasilkan. Pada tahun 2023, jumlah sampah global yang dihasilkan mencapai 2,1 miliar ton, sehingga diperlukan pengelolaan sampah yang berkelanjutan. Teknologi Waste-to-Energy (WtE) menawarkan solusi inovatif untuk mengatasi kedua permasalahan tersebut dengan mengkonversi berbagai jenis sampah menjadi energi terbarukan. Artikel ini bertujuan mengeksplorasi teknologi konversi sampah menjadi energi, mencakup metode termokimia, biokimia, dan kimia, serta menganalisis efisiensi dan dampak lingkungannya. Konversi termokimia meliputi pembakaran, gasifikasi, dan pirolisis, mampu menghasilkan panas, syngas, dan bio-oil dari sampah padat dengan efisiensi berbeda-beda. Pembakaran langsung menggunakan suhu 850-1.200°C, gasifikasi pada suhu 800-1.200°C, dan pirolisis terjadi pada suhu 300-800°C. Konversi biokimia melalui anaerobic digestion dan fermentasi fokus pada pengolahan sampah organik menjadi biogas dan biofuel. Konversi kimia menggunakan limbah minyak dengan proses transesterifikasi untuk menghasilkan biodiesel dapat meminimalkan 60–70% biaya proses dibanding dengan menggunakan bahan baku lain. Setiap teknologi memiliki keunggulan spesifik tergantung karakteristik sampah dan kondisi operasional. Tantangan utama meliputi optimalisasi efisiensi proses, pengurangan emisi, dan keberlanjutan ekonomi. Penelitian mendatang perlu difokuskan pada pengembangan teknologi purifikasi, katalis yang lebih efisien, dan integrasi multiteknologi. Oleh karena itu, WtE memiliki potensi besar dalam mendukung transisi energi global menuju sistem rendah karbon, dengan kemampuan mengurangi volume sampah sambil menghasilkan energi terbarukan.


Keywords


Energi terbarukan; Keberlanjutan; Pengelolaan sampah; Teknologi konversi; Waste-to-Energy.

Full Text:

PDF

References


Aini, N. A., Jamilatun, S., & Pitoyo, J. (2022). Pengaruh Tipe Biomassa pada Produk Pirolisis : A Review. Agroindustrial Technology Journal, 6(1), 89–101. https://doi.org/10.21111/atj.v6i1.7559

Akkoyunlu, B., Daly, S., & Casey, E. (2021). Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. Bioresource Technology, 341. https://doi.org/10.1016/j.biortech.2021.125793

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of the Total Environment, 589, 66–72. https://doi.org/10.1016/j.scitotenv.2017.02.206

Banerjee, N. (2022). Biomass to Energy — an Analysis of Current Technologies, Prospects, and Challenges. BioEnergy Research, 16(2), 683–716. https://doi.org/10.1007/s12155-022-10500-7

Bianchini, A., Cento, F., Golfera, L., Pellegrini, M., & Saccani, C. (2016). Performance analysis of different scrubber systems for removal of particulate emissions from a small size biomass boiler. Biomass and Bioenergy, 92, 31–39. https://doi.org/10.1016/j.biombioe.2016.06.005

Brunner, P. H., & Rechberger, H. (2015). Waste to energy - key element for sustainable waste management. Waste Management, 37, 3–12. https://doi.org/10.1016/j.wasman.2014.02.003

Carmona-Cabello, M., Sáez-Bastante, J., Pinzi, S., & Dorado, M. P. (2019). Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification. Fuel, 255. https://doi.org/10.1016/j.fuel.2019.115817

Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291. https://doi.org/10.1016/j.jenvman.2021.112661

Curcio, A., Rodat, S., Vuillerme, V., & Abanades, S. (2022). Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass. Energy, 254.

Curry, R., Pérez-Camacho, M. N., Brennan, R., Gilkinson, S., Cromie, T., Foster, P., Smyth, B., Orozco, A., Groom, E., Murray, S., Hanna, J. A., Kelly, M., Burke, M., Black, A., Irvine, C., Rooney, D., Glover, S., McCullough, G., Foley, A., & Ellis, G. (2018). Quantification of anaerobic digestion feedstocks for a regional bioeconomy. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 171(4), 94–103. https://doi.org/10.1680/jwarm.17.00014

Esercizio, N., Lanzilli, M., Vastano, M., Landi, S., Xu, Z., Gallo, C., Nuzzo, G., Manzo, E., Fontana, A., & D’Ippolito, G. (2021). Fermentation of biodegradable organic waste by the family thermotogaceae. Resources, 10(4). https://doi.org/10.3390/resources10040034

Fadhilla, P. N., & Nazarudin, S. (2023). Peranan Gasifikasi Batubara Menjadi Dimetil Eter (DME) dalam Bauran Energi Baru dan Kontribusinya pada Penurunan Emisi Gas Rumah Kaca di Indonesia. Jurnal Energi Baru Dan Terbarukan, 4(2), 83–96. https://doi.org/10.14710/jebt.2023.17420

Febriani, A. V., Idris, M., & Hakim, L. (2024). Tranformasi Minyak Jelantah menjadi Renewable Energy Dalam Perspektif Al Islam dan Kemuhammadiyahan. Jurnal Kemuhammadiyahan dan Integrasi Ilmu, 2(2), 193-202.

Foroutan, R., Esmaeili, H., Mousavi, S. M., Hashemi, S. A., & Yeganeh, G. (2019). The physical properties of biodiesel-diesel fuel produced via transesterification process from different oil sources. Physical Chemistry Research, 7(2), 415–424. https://doi.org/10.22036/pcr.2019.173224.1600

Gandidi, I. M., Susila, M. D., & Pambudi, N. A. (2017). Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW) in Indonesia using non-isothermal and isothermal experimental. Case Studies in Thermal Engineering, 10, 357–361. https://doi.org/10.1016/j.csite.2017.08.003

Ge, X., Vasco-Correa, J., & Li, Y. (2017). Solid-State Fermentation Bioreactors and Fundamentals. In Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls (pp. 381–402). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63663-8.00013-6

Hognert, J., & Nilsson, L. (2016). The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste. Applied Thermal Engineering, 106, 174–179. https://doi.org/10.1016/j.applthermaleng.2016.05.185

Idris, M., Setyawan, M., & Mufrodi, Z. (2024). Teknologi Insinerasi Sebagai Solusi Pengolahan Sampah Perkotaan dan Pemulihan Energi: A Review. Seminar Nasional Sains Dan Teknologi 2024, April. https://jurnal.umj.ac.id/index.php/semnastek/article/view/22490/10451

Idris, M., Setyawan, M., & Suharto, T. E. (2024). Effect of Flow Rate Ratio of Air and Waste Cooking Oil on Combustion Temperature and Furnace Efficiency. Eksergi, 22(1), 25-32.

Inayat, A., Rocha-Meneses, L., Ghenai, C., Abdallah, M., Shanableh, A., Al-Ali, K., Alghfeli, A., & Alsuwaidi, R. (2022). Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass. Case Studies in Thermal Engineering, 31. https://doi.org/10.1016/j.csite.2022.101841

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science & Technology, 7(3), 565–582. https://doi.org/10.xxxxx/ijost.vXiX

Jamilatun, S., Pitoyo, J., & Setyawan, M. (2023). Technical, Economic, and Environmental Review of Waste to Energy Technologies from Municipal Solid Waste. Jurnal Ilmu Lingkungan, 21(3), 581–593. https://doi.org/10.14710/jil.21.3.581-593

Jamilatun, S., & Setyawan, M. (2012). Kondensasi Asap Pirolisis Tempurung Kelapa Menjadi Asap Cair (Liquid Smoke) Berbasis pada Luas Transfer Perpindahan Panas. Symposium in Industrial Technology, 25–32.

Jurado, L., Papaefthimiou, V., Thomas, S., & Roger, A. C. (2021). Upgrading syngas from wood gasification through steam reforming of tars over highly active Ni-perovskite catalysts at relatively low temperature. Applied Catalysis B: Environmental, 299, 1–12. https://doi.org/10.1016/j.apcatb.2021.120687

Jurczyk, M., Mikus, M., & Dziedzic, K. (2016). Flue gas cleaning in municipal waste-to-energy plants part I. Infrastruktura i Ekologia Terenow Wiejskich. https://doi.org/10.14597/infraeco.2016.4.1.086

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050.

Klinghoffer, N. B., Themelis, N. J., & Castaldi, M. J. (2013). Waste to energy (WTE): An introduction. Waste to Energy Conversion Technology, 1–14. https://doi.org/10.1533/9780857096364.1.3

Kothari, R., Tyagi, V. V., & Pathak, A. (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. In Renewable and Sustainable Energy Reviews (Vol. 14, Issue 9, pp. 3164–3170). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.05.005

Kumar, A., & Samadder, S. R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. https://doi.org/10.1016/j.wasman.2017.08.046

Lee, H.-S., Xin, W., Katakojwala, R., Mohan, V., & Tabish, N. M. D. (2022). Microbial electrolysis cells for the production of biohydrogen in dark fermentation – A review. Bioresource Technology, 363.

Lisbona, P., Pascual, S., & Pérez, V. (2023). Waste to energy: Trends and perspectives. Chemical Engineering Journal Advances, 14. https://doi.org/10.1016/j.ceja.2023.100494

Makarichi, L., Jutidamrongphan, W., & Techato, K. anan. (2018). The evolution of waste-to-energy incineration: A review. In Renewable and Sustainable Energy Reviews (Vol. 91, pp. 812–821). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.04.088

Maneerung, T., Kawi, S., Dai, Y., & Wang, C. H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123, 487–497. https://doi.org/10.1016/j.enconman.2016.06.071

Mateos, P. S., Navas, M. B., Morcelle, S. R., Ruscitti, C., Matkovic, S. R., & Briand, L. E. (2021). Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catalysis Today, 372, 211–219. https://doi.org/10.1016/j.cattod.2020.09.027

Matsakas, L., Gao, Q., Jansson, S., Rova, U., & Christakopoulos, P. (2017). Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology, 26, 69–83. https://doi.org/10.1016/j.ejbt.2017.01.004

Mazzoni, L., Janajreh, I., Elagroudy, S., & Ghenai, C. (2020). Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy, 196. https://doi.org/10.1016/j.energy.2020.117001

McCarty, N. S., & Ledesma-Amaro, R. (2019). Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends in Biotechnology, 37(2), 181–197. https://doi.org/10.1016/j.tibtech.2018.11.002

Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B., & Pugazhendhi, A. (2020). Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment, 728. https://doi.org/10.1016/j.scitotenv.2020.138481

Naran, E., Toor, U. A., & Kim, D. J. (2016). Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. International Biodeterioration and Biodegradation, 113, 17–21. https://doi.org/10.1016/j.ibiod.2016.04.011

Olubunmi, B. E., Karmakar, B., Aderemi, O. M., G., A. U., Auta, M., & Halder, G. (2020). Parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe-supported anthill catalyst. Journal of Environmental Chemical Engineering, 8(5). https://doi.org/10.1016/j.jece.2020.104288

Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery, 13, 8383–8401. https://doi.org/10.1007/s13399-020-00965-x/Published

Rizwan, M., Shah, S. H., Mujtaba, G., Mahmood, Q., Rashid, N., & Shah, F. A. (2019). Ecofuel feedstocks and their prospect. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability (pp. 3–16). Elsevier. https://doi.org/10.1016/B978-0-08-102791-2.00001-5

Santos, R. E. dos, Santos, I. F. S. dos, Barros, R. M., Bernal, A. P., Tiago Filho, G. L., & Silva, F. das G. B. da. (2019). Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Journal of Environmental Management, 231, 198–206. https://doi.org/10.1016/j.jenvman.2018.10.015

Sevillano, C. A., Pesantes, A. A., Peña Carpio, E., Martínez, E. J., & Gómez, X. (2021). Anaerobic digestion for producing renewable energy-the evolution of this technology in a new uncertain scenario. Entropy, 23(2), 1–23. https://doi.org/10.3390/e23020145

Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Science of the Total Environment, 713, 1–13. https://doi.org/10.1016/j.scitotenv.2020.136633

Shovon, S. M., Akash, F. A., Rahman, W., Rahman, M. A., Chakraborty, P., Hossain, H. M. Z., & Monir, M. U. (2024). Strategies of managing solid waste and energy recovery for a developing country – A review. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24736

Simsek, S., & Uslu, S. (2020). Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions. Fuel, 280. https://doi.org/10.1016/j.fuel.2020.118613

Soria-Verdugo, A., Cano-Pleite, E., Passalacqua, A., & Fox, R. O. (2023). Effect of particle shape on biomass pyrolysis in a bubbling fluidized bed. Fuel, 339. https://doi.org/10.1016/j.fuel.2022.127365

Supraja, K. V., Behera, B., & Paramasivan, B. (2020). Optimization of process variables on two-step microwave-assisted transesterification of waste cooking oil. Sustainable Industrial and Environmental Bioprocesses, 27, 27244–27255.

Tessele, F., & Van Lier, J. B. (2020). Anaerobic digestion and the circular economy. Water E-Journal , 5(3).

Traven, L. (2023). Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Studies in Chemical and Environmental Engineering, 8. https://doi.org/10.1016/j.cscee.2023.100491

Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. In Renewable and Sustainable Energy Reviews (Vol. 93, pp. 380–399). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.05.051

Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., & Chu, Y. M. (2021). Prospects of Bioenergy Production From Organic Waste Using Anaerobic Digestion Technology: A Mini Review. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.627093

Van, D. P., Fujiwara, T., Tho, B. L., Toan, P. P. S., & Minh, G. H. (2020). A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental Engineering Research, 25(1), 1–17.

Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071. https://doi.org/10.1016/j.rser.2016.04.054

Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198, 1–11. https://doi.org/10.1016/j.energy.2020.117352

Yue, W., Ma, X., Yu, Z., Liu, H., Li, M., & Lu, X. (2023). Ni-CaO bifunctional catalyst for biomass catalytic pyrolysis to produce hydrogen-rich gas. Journal of Analytical and Applied Pyrolysis, 169.

Zhao, B., Su, Y., Liu, D., Zhang, H., Liu, W., & Cui, G. (2016). SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms. Energy, 113, 821–830. https://doi.org/10.1016/j.energy.2016.07.107


Refbacks

  • There are currently no refbacks.