POTENSI METODE KOKRISTALISASI: PEMBENTUKAN KOKRISTAL SEBAGAI UPAYA DALAM PENINGKATAN KELARUTAN SUATU OBAT

Anazt Ellysa Okta Permatasari, Annas Binarjo, Arif Budi Setianto

Abstract


ABSTRAK

Salah satu faktor kunci untuk mencapai konsentrasi obat yang efektif dalam sirkulasi sistemik dan menghasilkan efek farmakologis yang diinginkan adalah kelarutan. Senyawa yang memiliki kelarutan rendah dalam air sering kali menyebabkan penyerapan yang buruk di saluran pencernaan, sehingga bioavailabilitasnya rendah. Kokristalisasi adalah salah satu metode yang digunakan untuk mengatasi permasalahan tersebut. Kokristal memiliki kemampuan untuk mengubah sifat fisikokimia pada API, seperti kelarutan, disolusi, stabilitas, dan bioavaibilitas, tanpa mempengaruhi aktivitas farmakologisnya. Kokristal adalah bentuk padat baru multi-komponen stoikiometri yang dilekatkan oleh interaksi non-kovalen . Kokristal farmasi terdiri dari bahan farmasi aktif dan koformer yang tepat, Koformer merupakan komponen yang berinteraksi dengan API dalam kisi kristal secara nonionik. penelitian ini bertujuan ini untuk mengeksplorasi potensi coformer dalam pembentukan kokristal sebagai upaya peningkatan kelarutan suatu obat. Penelitian ini dilakukan dengan metode tinjauan sistematis dan pedoman PRISMA. Kesimpulan dari berbagai studi penelitian kokristal menunjukkan potensi signifikan dari kokristalisasi dalam meningkatkan kelarutan, laju disolusi, stabilitas, dan ketersediaan hayati senyawa obat. Penelitian tentang kokristal obat yang berbeda dengan berbagai koformer, seperti Ezetimibe dengan glisin, karbamazepin dengan asam dikarboksilat, glibenklamid dengan sakarin, cilnidipine dengan nicotinamide, dan trimetoprim dengan asam mandelat, secara konsisten menunjukkan peningkatan sifat fisikokimia.

Kata kunci: Coformer; Disolusi ;Kelarutan obat; Kokristal; Kokrystalisasi


Full Text:

PDF

References


Al-Kazemi, R. (2019) ‘Dissolution enhancement of atorvastatin calcium by cocrystallization’, Advanced

Pharmaceutical Bulletin, 9(4), pp. 559–570. Available at: https://doi.org/10.15171/apb.2019.064.

Anand, R. and Nanda, A. (2022) ‘Formulation and Evaluation of Cocrystals of a Bcs Class Ii Drug Using

Glycine As Coformer’, International Journal of Applied Pharmaceutics, 14(6), pp. 68–76. Available

at: https://doi.org/10.22159/ijap.2022v14i6.46090.

Batool, F. et al. (2019) ‘Use of glutaric acid to improve the solubility and dissolution profile of glipizide

through pharmaceutical cocrystallization’, Acta Poloniae Pharmaceutica - Drug Research, 76(1), pp.

–114. Available at: https://doi.org/10.32383/appdr/94246.

Brahamdutt et al. (2021) ‘Formulation of eutectic mixture of curcumin with salicylic acid for improving its

dissolution profile’, Research Journal of Pharmacy and Technology, 14(4), pp. 1875–1879. Available

at: https://doi.org/10.52711/0974-360X.2021.00331.

Budiman, A. et al. (2019) ‘The development of glibenclamide-saccharin cocrystal tablet formulations to

increase the dissolution rate of the drug’, International Journal of Applied Pharmaceutics, 11(4), pp.

–364. Available at: https://doi.org/10.22159/ijap.2019v11i4.33802.

Cherukkoth, R. et al. (2024) ‘Characterisation, Evaluation and Density Functional Analysis of CilnidipineOtinamide Cocrystals Developed By Liquid Assisted Grinding Technique: a Sustainable Approach for Enhanced Solubility’, International Journal of Applied Pharmaceutics, 16(2), pp. 132–138. Available at: https://doi.org/10.22159/ijap.2024v16i2.49848.

Cruz, R.M. (2020) ‘Identification and pharmaceutical characterization of a new itraconazole terephthalic

acid cocrystal’, Pharmaceutics, 12(8), pp. 1–18. Available at: https://doi.org/10.3390/pharmaceutics12080741.

Dhibar, M. (2023) ‘Critical Analysis and Optimization of Stoichiometric Ratio of Drug-Coformer on Cocrystal

Design: Molecular Docking, In Vitro and In Vivo Assessment’, Pharmaceuticals, 16(2). Available at: https://doi.org/10.3390/ph16020284.

Fitriani, L. et al. (2023) ‘Formation and Characterization of Multicomponent Crystal of Trimethoprim and Mandelic Acid By Solvent Drop Grinding Method’, International Journal of Applied Pharmaceutics, 15(Special Issue 1), pp. 75–79. Available at: https://doi.org/10.22159/ijap.2023.v15s1.06.

Food and Drug Administration (2018) ‘Regulatory classification of pharmaceutical co-crystals, guidance for

industry’, U.S. Department of Health and Human Services, (February), pp. 1–4. Available at: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm%0Ahttps://www.fda.gov/media/81824/download.

Ka, S. (no date) ‘Application of 1-Hydroxy-4 , 5-Dimethyl-Imidazole 3-Oxide as Coformer in Formation of

Pharmaceutical Cocrystals’.

Ledianasari, Warya, S. and Nurjayanti, S. (2022) ‘Solubility improvement of gallic acid in water through cocrystal formation with the solvent-drop grinding method and tartaric acid as co-former’, Pharmacy Education, 22(2), pp. 156–159. Available at: https://doi.org/10.46542/pe.2022.222.156159.

Ma, P. (2023) ‘New Lidocaine-Based Pharmaceutical Cocrystals: Preparation, Characterization, and Influence of the Racemic vs. Enantiopure Coformer on the Physico-Chemical Properties’, Pharmaceutics, 15(4). Available at: https://doi.org/10.3390/pharmaceutics15041102.

Renjish, C. et al. (2023) ‘Preparation, Characterisation, Evaluation and Dft Analysis of CilnidipineLphenylalanine Cocrystal’, International Journal of Applied Pharmaceutics, 15(6), pp. 365–372. Available at: https://doi.org/10.22159/ijap.2023v15i6.49228.

Shanthala, H.K. et al. (2021) ‘Enhancement of solubility and dissolution rate of acetylsalicylic acid via cocrystallization technique: A novel asa-valine cocrystal’, International Journal of Applied Pharmaceutics, 13(1), pp. 199–205. Available at: https://doi.org/10.22159/ijap.2021v13i1.40054.

Srivastava, D. et al. (2019) ‘Pharmaceutical Cocrystal: A Novel Approach to Tailor the Biopharmaceutical Properties of a Poorly Water Soluble Drug’, Recent Patents on Drug Delivery & Formulation, 13(1), pp. 62–69. Available at: https://doi.org/10.2174/1872211313666190306160116.

Surov, A.O. (2023) ‘Polymorphism of Carbamazepine Pharmaceutical Cocrystal: Structural Analysis and

Solubility Performance’, Pharmaceutics, 15(6). Available at: https://doi.org/10.3390/pharmaceutics15061747.

Thenge, R. (2020) ‘Co-crystals of carvedilol: Preparation, haracterization and evaluation’, International Journal of Applied Pharmaceutics, 12(1), pp. 42–49. Available at: https://doi.org/10.22159/ijap.2020v12i1.35640.

Wasim, M. (2021) ‘Fabrication of Carbamazepine Cocrystals: Characterization, in Vitro and Comparative in Vivo Evaluation’, BioMed Research International, 2021. Available at: https://doi.org/10.1155/2021/6685806.

Xiao, F. (2022) ‘Cocrystal Prediction of Bexarotene by Graph Convolution Network and Bioavailability Improvement’, Pharmaceutics, 14(10). Available at: https://doi.org/10.3390/pharmaceutics14102198.

Xie, Y. (2022) ‘Insight into the Formation of Cocrystal and Salt of Tenoxicam from the Isomer and Conformation’, Pharmaceutics, 1


Refbacks

  • There are currently no refbacks.


Prosiding Seminar Nasional Farmasi Universitas Ahmad Dahlan
e-ISSN 2986-8858
Published by Universitas Ahmad Dahlan Yogyakarta Indonesia
Website: http://seminar.uad.ac.id/index.php/SNFUAD/index